epigenetic clock
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 159)

H-INDEX

22
(FIVE YEARS 8)

Author(s):  
Valentin Max Vetter ◽  
Christian Humberto Kalies ◽  
Yasmine Sommerer ◽  
Dominik Spira ◽  
Johanna Drewelies ◽  
...  

Abstract DNA methylation age acceleration (DNAmAA, derived from an epigenetic clock) and relative leukocyte telomere length (rLTL) are widely accepted biomarkers of aging. Nevertheless, it is still unclear which aspects of aging they represent best. Here we evaluated longitudinal associations between baseline rLTL and DNAmAA (estimated with 7-CpG clock) and functional assessments covering different domains of aging. Additionally, we made use of cross-sectional data on these assessments and examined their association with DNAmAA estimated by five different DNAm age measures. Two-wave longitudinal data was available for 1,083 participants of the Berlin Aging Study II (BASE-II) who were re-examined on average 7.4 years after baseline as part of the GendAge study. Functional outcomes were assessed with Fried’s frailty score, Tinetti mobility test, falls in the past 12 months (yes/no), Finger-floor distance, Mini Mental State Examination (MMSE), Center for Epidemiologic Studies Depression Scale (CES-D), Activities of Daily Living (ADL), Instrumented ADL (IADL) and Mini Nutritional Assessment (MNA). Overall, we found no evidence for an association between the molecular biomarkers measured at baseline, rLTL and DNAmAA (7-CpG clock), and functional assessments assessed at follow-up. Similarly, a cross-sectional analyses of follow-up data did also not show evidence for associations of the various DNAmAA measures (7-CpG clock, Horvath’s clock, Hannum’s clock PhenoAge, and GrimAge) with functional assessments. In conclusion, neither rLTL nor 7-CpG DNAmAA were able to predict impairment in the analyzed assessments over a ~7-year time-course. Similarly, DNAmAA estimated from five epigenetic clocks was not a good cross-sectional marker of health deterioration either.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Thomas H. Jonkman ◽  
Koen F. Dekkers ◽  
Roderick C. Slieker ◽  
Crystal D. Grant ◽  
M. Arfan Ikram ◽  
...  

Abstract Background Epigenetic clocks use DNA methylation (DNAm) levels of specific sets of CpG dinucleotides to accurately predict individual chronological age. A popular application of these clocks is to explore whether the deviation of predicted age from chronological age is associated with disease phenotypes, where this deviation is interpreted as a potential biomarker of biological age. This wide application, however, contrasts with the limited insight in the processes that may drive the running of epigenetic clocks. Results We perform a functional genomics analysis on four epigenetic clocks, including Hannum’s blood predictor and Horvath’s multi-tissue predictor, using blood DNA methylome and transcriptome data from 3132 individuals. The four clocks result in similar predictions of individual chronological age, and their constituting CpGs are correlated in DNAm level and are enriched for similar histone modifications and chromatin states. Interestingly, DNAm levels of CpGs from the clocks are commonly associated with gene expression in trans. The gene sets involved are highly overlapping and enriched for T cell processes. Further analysis of the transcriptome and methylome of sorted blood cell types identifies differences in DNAm between naive and activated T and NK cells as a probable contributor to the clocks. Indeed, within the same donor, the four epigenetic clocks predict naive cells to be up to 40 years younger than activated cells. Conclusions The ability of epigenetic clocks to predict chronological age involves their ability to detect changes in proportions of naive and activated immune blood cells, an established feature of immuno-senescence. This finding may contribute to the interpretation of associations between clock-derived measures and age-related health outcomes.


2022 ◽  
Vol 12 ◽  
Author(s):  
N. Kuzub ◽  
V. Smialkovska ◽  
V. Momot ◽  
V. Moseiko ◽  
O. Lushchak ◽  
...  

Epigenetic clocks are the models, which use CpG methylation levels for the age prediction of an organism. Although there were several epigenetic clocks developed there is a demand for development and evaluation of the relatively accurate and sensitive epigenetic clocks that can be used for routine research purposes. In this study, we evaluated two epigenetic clock models based on the 4 CpG sites and 2 CpG sites in the human genome using the pyrosequencing method for their methylation level estimation. The study sample included 153 people from the Ukrainian population with the age from 0 to 101. Both models showed a high correlation with the chronological age in our study sample (R2 = 0.85 for the 2 CpG model and R2 = 0.92 for the 4 CpG model). We also estimated the accuracy metrics of the age prediction in our study sample. For the age group from 18 to 80 MAD was 5.1 years for the 2 CpG model and 4.1 years for the 4 CpG model. In this regard, we can conclude, that the models evaluated in the study have good age predictive accuracy, and can be used for the epigenetic age evaluation due to the relative simplicity and time-effectiveness.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 96
Author(s):  
Alex Caulton ◽  
Ken G. Dodds ◽  
Kathryn M. McRae ◽  
Christine Couldrey ◽  
Steve Horvath ◽  
...  

Robust biomarkers of chronological age have been developed in humans and model mammalian species such as rats and mice using DNA methylation data. The concept of these so-called “epigenetic clocks” has emerged from a large body of literature describing the relationship between genome-wide methylation levels and age. Epigenetic clocks exploit this phenomenon and use small panels of differentially methylated cytosine (CpG) sites to make robust predictions of chronological age, independent of tissue type. Here, we present highly accurate livestock epigenetic clocks for which we have used the custom mammalian methylation array “HorvathMammalMethyl40” to construct the first epigenetic clock for domesticated goat (Capra hircus), cattle (Bos taurus), Red (Cervus elaphus) and Wapiti deer (Cervus canadensis) and composite-breed sheep (Ovis aries). Additionally, we have constructed a ‘farm animal clock’ for all species included in the study, which will allow for robust predictions to be extended to various breeds/strains. The farm animal clock shows similarly high accuracy to the individual species’ clocks (r > 0.97), utilizing only 217 CpG sites to estimate age (relative to the maximum lifespan of the species) with a single mathematical model. We hypothesise that the applications of this livestock clock could extend well beyond the scope of chronological age estimates. Many independent studies have demonstrated that a deviation between true age and clock derived molecular age is indicative of past and/or present health (including stress) status. There is, therefore, untapped potential to utilize livestock clocks in breeding programs as a predictor for age-related production traits.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Anders Berglund ◽  
Jaime Matta ◽  
Jarline Encarnación-Medina ◽  
Carmen Ortiz-Sanchéz ◽  
Julie Dutil ◽  
...  

In 2021, approximately 248,530 new prostate cancer (PCa) cases are estimated in the United States. Hispanic/Latinos (H/L) are the second largest racial/ethnic group in the US. The objective of this study was to assess DNA methylation patterns between aggressive and indolent PCa along with ancestry proportions in 49 H/L men from Puerto Rico (PR). Prostate tumors were classified as aggressive (n = 17) and indolent (n = 32) based on the Gleason score. Genomic DNA samples were extracted by macro-dissection. DNA methylation patterns were assessed using the Illumina EPIC DNA methylation platform. We used ADMIXTURE to estimate global ancestry proportions. We identified 892 differentially methylated genes in prostate tumor tissues as compared with normal tissues. Based on an epigenetic clock model, we observed that the total number of stem cell divisions (TNSC) and stem cell division rate (SCDR) were significantly higher in tumor than adjacent normal tissues. Regarding PCa aggressiveness, 141 differentially methylated genes were identified. Ancestry proportions of PR men were estimated as African, European, and Indigenous American; these were 24.1%, 64.2%, and 11.7%, respectively. The identification of DNA methylation profiles associated with risk and aggressiveness of PCa in PR H/L men will shed light on potential mechanisms contributing to PCa disparities in PR population.


2021 ◽  
Author(s):  
Alina PS Pang ◽  
Albert T. Higgins-Chen ◽  
Florence Comite ◽  
Ioana Raica ◽  
Christopher Arboleda ◽  
...  

AbstractThe host epigenetic landscape is rapidly changed during SARS-CoV-2 infection and evidence suggests that severe COVID-19 is associated with durable scars to the epigenome. Specifically, aberrant DNA methylation changes in immune cells and alterations to epigenetic clocks in blood relate to severe COVID-19. However, a longitudinal assessment of DNA methylation states and epigenetic clocks in blood from healthy individuals prior to and following test-confirmed non-hospitalized COVID-19 has not been performed. Moreover, the impact of mRNA COVID-19 vaccines upon the host epigenome remains understudied. Here, we first examined DNA methylation states in blood of 21 participants prior to and following test confirmed COVID-19 diagnosis at a median timeframe of 8.35 weeks. 261 CpGs were identified as differentially methylated following COVID-19 diagnosis in blood at an FDR adjusted P value <0.05. These CpGs were enriched in gene body and northern and southern shelf regions of genes involved in metabolic pathways. Integrative analysis revealed overlap among genes identified in transcriptional SARS-CoV-2 infection datasets. Principal component-based epigenetic clock estimates of PhenoAge and GrimAge significantly increased in people over 50 following infection by an average of 2.1 and 0.84 years. In contrast, PCPhenoAge significantly decreased in people under 50 following infection by an average of 2.06 years. This observed divergence in epigenetic clocks following COVID-19 was related to age and immune cell-type compositional changes in CD4+ T cells, B cells, granulocytes, plasmablasts, exhausted T cells, and naïve T cells. Complementary longitudinal epigenetic clock analyses of 36 participants prior to and following Pfizer and Moderna mRNA-based COVID-19 vaccination revealed vaccination significantly reduced principal component-based Horvath epigenetic clock estimates in people over 50 by an average of 3.91 years for those that received Moderna. This reduction in epigenetic clock estimates was significantly related to chronological age and immune cell-type compositional changes in B cells and plasmablasts pre- and post-vaccination. These findings suggest the potential utility of epigenetic clocks as a biomarker of COVID-19 vaccine responses. Future research will need to unravel the significance and durability of short-term changes in epigenetic age related to COVID-19 exposure and mRNA vaccination.


Author(s):  
Elisa Lemke ◽  
Valentin Max Vetter ◽  
Nora Berger ◽  
Verena Laura Banszerus ◽  
Maximilian König ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 5-5
Author(s):  
Albert Higgins-Chen ◽  
Kyra Thrush ◽  
Tina Hu-Seliger ◽  
Yunzhang Wang ◽  
Sara Hagg ◽  
...  

Abstract Epigenetic clocks are widely used aging biomarkers, but they are calculated from methylation data for individual CpGs that can be surprisingly unreliable. We report that technical noise causes six major epigenetic clocks to deviate by 3 to 9 years between replicates. We present a novel computational solution: we perform principal component analysis followed by biological age prediction using principal components, extracting shared age-related changes across CpGs while ignoring noise from individual CpGs. Our novel principal-component versions of six clocks show agreement between most technical replicates within 1 year, and increased stability in short- and long-term longitudinal studies. This requires only one additional step compared to traditional clocks, does not require prior knowledge of CpG reliabilities, and can improve the reliability of any existing or future epigenetic biomarker. The extremely high reliability of principal component epigenetic clocks makes them particularly useful for personalized medicine and clinical trials evaluating novel aging interventions.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Lacey W. Heinsberg ◽  
Dongjing Liu ◽  
John R. Shaffer ◽  
Daniel E. Weeks ◽  
Yvette P. Conley

Abstract Background Biological aging may occur at different rates than chronological aging due to genetic, social, and environmental factors. DNA methylation (DNAm) age is thought to be a reliable measure of accelerated biological aging which has been linked to an array of poor health outcomes. Given the importance of chronological age in recovery following aneurysmal subarachnoid hemorrhage (aSAH), a type of stroke, DNAm age may also be an important biomarker of outcomes, further improving predictive models. Cerebrospinal fluid (CSF) is a unique tissue representing the local central nervous system environment post-aSAH. However, the validity of CSF DNAm age is unknown, and it is unclear which epigenetic clock is ideal to compute CSF DNAm age, particularly given changes in cell type heterogeneity (CTH) during the acute recovery period. Further, the stability of DNAm age post-aSAH, specifically, has not been examined and may improve our understanding of patient recovery post-aSAH. Therefore, the purpose of this study was to characterize CSF DNAm age over 14 days post-aSAH using four epigenetic clocks. Results Genome-wide DNAm data were available for two tissues: (1) CSF for N = 273 participants with serial sampling over 14 days post-aSAH (N = 850 samples) and (2) blood for a subset of n = 72 participants at one time point post-aSAH. DNAm age was calculated using the Horvath, Hannum, Levine, and “Improved Precision” (Zhang) epigenetic clocks. “Age acceleration” was computed as the residuals of DNAm age regressed on chronological age both with and without correcting for CTH. Using scatterplots, Pearson correlations, and group-based trajectory analysis, we examined the relationships between CSF DNAm age and chronological age, the concordance between DNAm ages calculated from CSF versus blood, and the stability (i.e., trajectories) of CSF DNAm age acceleration over time during recovery from aSAH. We observed moderate to strong correlations between CSF DNAm age and chronological age (R = 0.66 [Levine] to R = 0.97 [Zhang]), moderate to strong correlations between DNAm age in CSF versus blood (R = 0.69 [Levine] to R = 0.98 [Zhang]), and stable CSF age acceleration trajectories over 14 days post-aSAH in the Horvath and Zhang clocks (unadjusted for CTH), as well as the Hannum clock (adjusted for CTH). Conclusions CSF DNAm age was generally stable post-aSAH. Although correlated, CSF DNAm age differs from blood DNAm age in the Horvath, Hannum, and Levine clocks, but not in the Zhang clock. Taken together, our results suggest that, of the clocks examined here, the Zhang clock is the most robust to CTH and is recommended for use in complex tissues such as CSF.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Brenda Larison ◽  
Gabriela M. Pinho ◽  
Amin Haghani ◽  
Joseph A. Zoller ◽  
Caesar Z. Li ◽  
...  

AbstractEffective conservation and management of threatened wildlife populations require an accurate assessment of age structure to estimate demographic trends and population viability. Epigenetic aging models are promising developments because they estimate individual age with high accuracy, accurately predict age in related species, and do not require invasive sampling or intensive long-term studies. Using blood and biopsy samples from known age plains zebras (Equus quagga), we model epigenetic aging using two approaches: the epigenetic clock (EC) and the epigenetic pacemaker (EPM). The plains zebra EC has the potential for broad application within the genus Equus given that five of the seven extant wild species of the genus are threatened. We test the EC’s ability to predict age in sister taxa, including two endangered species and the more distantly related domestic horse, demonstrating high accuracy in all cases. By comparing chronological and estimated age in plains zebras, we investigate age acceleration as a proxy of health status. An interaction between chronological age and inbreeding is associated with age acceleration estimated by the EPM, suggesting a cumulative effect of inbreeding on biological aging throughout life.


Sign in / Sign up

Export Citation Format

Share Document