Hedgehog signaling can enhance glycolytic ATP production in the Drosophila wing disc

2021 ◽  
Author(s):  
Julia Grzymkowski
2021 ◽  
Author(s):  
Ioannis Nellas ◽  
K. Venkatesan Iyer ◽  
Juan M. Iglesias-Artola ◽  
André Nadler ◽  
Natalie A. Dye ◽  
...  

ABSTRACTEnergy production and utilization is critically important for animal development and growth. How it is regulated in space and time during tissue growth remains largely unclear. Toward this end, we used a FRET-based adenosine triphosphate (ATP) sensor to dynamically monitor ATP levels across a growing tissue, using the Drosophila wing disc. We discovered that steady-state levels of ATP are spatially uniform across the wing pouch. Pharmacologically inhibiting oxidative phosphorylation, however, reveals spatial heterogeneities in metabolic behavior, whereby signaling centers at compartment boundaries produce more ATP from glycolysis than the rest of the tissue. Genetic perturbations indicate that the conserved Hedgehog (Hh) signaling pathway can enhance ATP production by glycolysis. Collectively, our work reveals a positive feedback loop between Hh signaling and energy metabolism, advancing our understanding of the connection between conserved developmental patterning genes and energy production during animal tissue development.


2021 ◽  
Vol 1868 (1) ◽  
pp. 118854
Author(s):  
David A. Patten ◽  
Shawn McGuirk ◽  
Ujval Anilkumar ◽  
Ghadi Antoun ◽  
Karan Gandhi ◽  
...  

1990 ◽  
Vol 258 (6) ◽  
pp. F1608-F1615 ◽  
Author(s):  
K. G. Dickman ◽  
L. J. Mandel

The effects of inhibition of mitochondrial energy production at various points along the respiratory chain on glycolytic lactate production and transport function were examined in a suspension of purified rabbit renal proximal tubules. Paradoxically, partial blockage at site 3 by hypoxia (1% O2) induced lactate production, whereas total site 3 blockage by anoxia (0% O2) failed to stimulate glycolysis. Compared with anoxia, hypoxic tubules exhibited greater preservation of ATP and K+ contents during O2 deprivation and more fully recovered oxidative metabolism and transport function during reoxygenation. The mitochondrial site 1 inhibitor rotenone and the uncoupler carbonyl cyanide-p-trifluorome-thoxyphenylhydrazone (FCCP) were equipotent stimuli for lactate production, whereas the site 2 inhibitor antimycin A failed to stimulate glycolysis despite a 90% inhibition of O2 consumption. Compared with antimycin A, treatment with rotenone or FCCP resulted in less cell injury [measured by lactate dehydrogenase (LDH) release] and greater preservation of cell K+ and ATP contents. 2-Deoxyglucose blocked lactate production by 50% in the presence of rotenone and increased LDH release, suggesting that glycolytic ATP is partially protective. Addition of ouabain during rotenone treatment reduced lactate production by 50%, indicating that glycolytic ATP can be used to fuel the Na pump when mitochondrial ATP production is inhibited. We conclude that 1) proximal tubules can generate lactate during inhibition of oxidative metabolism by hypoxia, rotenone, or FCCP; 2) mitochondrial inhibition is not obligatorily linked to activation of glycolysis, since neither anoxia nor antimycin A stimulate lactate production; 3) when ATP can be produced through anaerobic glycolysis it serves to protect cell viability and transport function during respiratory inhibition.


Methods ◽  
2014 ◽  
Vol 68 (1) ◽  
pp. 199-206 ◽  
Author(s):  
Tom A. Hartl ◽  
Matthew P. Scott

2021 ◽  
Author(s):  
Sandrine Pizette ◽  
Tamás Matusek ◽  
Bram Herpers ◽  
Pascal P. Thérond ◽  
Catherine Rabouille

In metazoans, tissue growth and patterning is partly controlled by the Hedgehog (Hh) morphogen. Using immuno-electron microscopy on Drosophila wing imaginal discs, we identified a cellular structure, the Hherisomes that contain the majority of intracellular Hh. Hherisomes are recycling tubular endosomes and their formation is specifically boosted by overexpression of Hh. Expression of Rab11, a small GTPase involved in recycling endosomes, boosts the size of Hherisomes and their Hh concentration. Conversely, increased expression of the transporter Dispatched, a regulator of Hh secretion, leads to their clearance. We show that increasing Hh density in Hherisomes through Rab11 overexpression enhances both the level of Hh-signaling and disc pouch growth, whereas Dispatched overexpression decreases high level Hh-signaling and growth. We propose that upon secretion, a pool of Hh triggers low level signaling, whereas a second pool of Hh is endocytosed and recycled through Hherisomes to stimulate high level signaling and disc pouch growth. Altogether our data indicate that Hherisomes are required to sustain physiological Hh activity necessary for patterning and tissue growth in the wing disc.


2018 ◽  
Author(s):  
Masahiko Takemura ◽  
Fredrik Noborn ◽  
Jonas Nilsson ◽  
Eriko Nakato ◽  
Tsu-Yi Su ◽  
...  

AbstractProteoglycans, a class of carbohydrate-modified proteins, often modulate growth factor signaling on the cell surface. However, the molecular mechanism by which proteoglycans regulate signal transduction is largely unknown. In this study, using a recently-developed glycoproteomic method, we found that Windpipe (Wdp) is a novel chondroitin sulfate proteoglycan (CSPG) in Drosophila. Wdp is a single-pass transmembrane protein with leucin-rich repeat (LRR) motifs and bears three CS sugar chain attachment sites in the extracellular domain. Here we show that Wdp modulates the Hedgehog (Hh) pathway. Overexpression of wdp inhibits Hh signaling in the wing disc, which is dependent on its CS chains and the LRR motifs. Conversely, loss of wdp leads to the upregulation of Hh signaling. Furthermore, knockdown of wdp increase the cell surface accumulation of Smoothened (Smo), suggesting that Wdp inhibits Hh signaling by regulating Smo stability. Our study demonstrates a novel role of CSPG in regulating Hh signaling.


Author(s):  
Simone Patergnani ◽  
Federica Baldassari ◽  
Elena De Marchi ◽  
Agnieszka Karkucinska-Wieckowska ◽  
Mariusz R. Wieckowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document