mitochondrial fusion
Recently Published Documents


TOTAL DOCUMENTS

621
(FIVE YEARS 204)

H-INDEX

79
(FIVE YEARS 12)

2022 ◽  
Vol 15 ◽  
Author(s):  
Nguyen Thanh Nhu ◽  
Shu-Yun Xiao ◽  
Yijie Liu ◽  
V. Bharath Kumar ◽  
Zhen-Yang Cui ◽  
...  

Neural mitochondrial dysfunction, neural oxidative stress, chronic neuroinflammation, toxic protein accumulation, and neural apoptosis are common causes of neurodegeneration. Elamipretide, a small mitochondrially-targeted tetrapeptide, exhibits therapeutic effects and safety in several mitochondria-related diseases. In neurodegeneration, extensive studies have shown that elamipretide enhanced mitochondrial respiration, activated neural mitochondrial biogenesis via mitochondrial biogenesis regulators (PCG-1α and TFAM) and the translocate factors (TOM-20), enhanced mitochondrial fusion (MNF-1, MNF-2, and OPA1), inhibited mitochondrial fission (Fis-1 and Drp-1), as well as increased mitophagy (autophagy of mitochondria). In addition, elamipretide has been shown to attenuate neural oxidative stress (hydrogen peroxide, lipid peroxidation, and ROS), neuroinflammation (TNF, IL-6, COX-2, iNOS, NLRP3, cleaved caspase-1, IL-1β, and IL-18), and toxic protein accumulation (Aβ). Consequently, elamipretide could prevent neural apoptosis (cytochrome c, Bax, caspase 9, and caspase 3) and enhance neural pro-survival (Bcl2, BDNF, and TrkB) in neurodegeneration. These findings suggest that elamipretide may prevent the progressive development of neurodegenerative diseases via enhancing mitochondrial respiration, mitochondrial biogenesis, mitochondrial fusion, and neural pro-survival pathway, as well as inhibiting mitochondrial fission, oxidative stress, neuroinflammation, toxic protein accumulation, and neural apoptosis. Elamipretide or mitochondrially-targeted peptide might be a targeted agent to attenuate neurodegenerative progression.


2022 ◽  
Author(s):  
Sanjay Kumar ◽  
Aaron Ramonett ◽  
Tasmia Ahmed ◽  
Euna Kwak ◽  
Paola Cruz Flores ◽  
...  

Mitochondrial remodeling is a fundamental process underlying cellular respiration and metabolism. Here we report TAK1 as a direct regulator of mitochondrial fusion. TAK1 is activated by a variety of mitogenic factors, cytokines and environmental stimuli, which we find induces rapid fragmentation through Mfn2 inactivation. TAK1 phosphorylates Mfn2 at Ser249, which inhibits the binding of GTP required for Mfn trans-dimerization and mitochondrial membrane fusion. Accordingly, expression of Mfn2-S249 phosphomimetics (Mfn2-E/D) constitutively promote fission whereas alanine mutant (Mfn2-A) yields hyperfused mitochondria and increased bioenergetics in cells. In mice, Mfn2-E knock-in yields embryonic lethality in homozygotes whereas heterozygotes are viable but exhibit increased visceral fat accumulation despite normal body weight and cognitive/motor functions compared to wildtype and Mfn2-A mice. Mature white adipocytes isolated from mutant mice reveal cell-autonomous TAK1-related effects on mitochondrial remodeling and lipid metabolism. These results identify Mfn2-S249 as a dynamic phosphoregulatory switch of mitochondrial fusion during development and energy homeostasis.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Xiaoling Ma ◽  
Shengchi Wang ◽  
Hui Cheng ◽  
Haichun Ouyang ◽  
Xiaoning Ma

Myocardial ischemia/reperfusion (I/R) injury can stimulate mitochondrial reactive oxygen species production. Optic atrophy 1- (OPA1-) induced mitochondrial fusion is an endogenous antioxidative mechanism that preserves the mitochondrial function. In our study, we investigated whether melatonin augments OPA1-dependent mitochondrial fusion and thus maintains redox balance during myocardial I/R injury. In hypoxia/reoxygenation- (H/R-) treated H9C2 cardiomyocytes, melatonin treatment upregulated OPA1 mRNA and protein expression, thereby enhancing mitochondrial fusion. Melatonin also suppressed apoptosis in H/R-treated cardiomyocytes, as evidenced by increased cell viability, diminished caspase-3 activity, and reduced Troponin T secretion; however, silencing OPA1 abolished these effects. H/R treatment augmented mitochondrial ROS production and repressed antioxidative molecule levels, while melatonin reversed these changes in an OPA1-dependent manner. Melatonin also inhibited mitochondrial permeability transition pore opening and maintained the mitochondrial membrane potential, but OPA1 silencing prevented these outcomes. These results illustrate that melatonin administration alleviates cardiomyocyte I/R injury by activating OPA1-induced mitochondrial fusion and inhibiting mitochondrial oxidative stress.


2021 ◽  
Author(s):  
Lang Hu ◽  
Yanjie Guo ◽  
Liqiang Song ◽  
He Wen ◽  
Nan Sun ◽  
...  

Abstract Background: Myocardial dysfunction is associated with an imbalance in mitochondrial fusion/fission dynamics in patients with diabetes. However, effective strategies to regulate mitochondrial dynamics in the diabetic heart are still lacking. This study investigated whether Nicotinamide riboside (NR) supplementation protects against diabetes-induced cardiac dysfunction by regulating mitochondrial fusion/fission and further explored the underlying mechanisms.Methods: Obese diabetic (db/db) and lean control (db/+) mice were each given NR oral supplementation in this study. NAD+ Content was determined in mice hearts and primary neonatal cardiomyocytes. Cardiac function was detected by echocardiography. Mitochondrial dynamics were analyzed by transmission electron microscopy in vivo and by confocal microscopy in vitro. Results: Here, we show an evident decrease in NAD+ level and mitochondrial fragmentation in the hearts of leptin receptor-deficient diabetic (db/db) mouse model. NR supplementation significantly increased NAD+ content in the diabetic heart tissues. Furthermore, NR treatment increased Mfn2 expression, promoted mitochondrial fusion, suppressed oxidative stress, reduced cardiomyocyte apoptosis and consequently improved cardiac function in db/db mice. In neonatal primary cardiomyocytes cultured in a high-glucose/high-fat medium, NR treatment also promoted mitochondrial fusion, suppressed mitochondria-derived ROS production and reduced cardiomyocyte apoptosis, which were all reversed when Mfn2 was knocked down. Mechanistically, chromatin immunoprecipitation (ChIP) and luciferase report assay analysis revealed that PGC1α and PPARα interdependently regulated Mfn2 transcription by binding to its promoter region. NR treatment elevated NAD+ levels and activated SIRT1, resulting in the deacetylation of PGC1α and promoting the transcription of Mfn2. Furthermore, the inhibition of SIRT1, PGC1α or PPARα blunted the positive effects of NR supplementation on Mfn2 expression and mitochondrial fusion. Conclusion: NR attenuates the development of diabetes-induced cardiac dysfunction by promoting mitochondrial fusion through the SIRT1-PGC1α-PPARα pathway, with PGC1α and PPARα being the interdependent co-regulatory factors for Mfn2. The promotion of mitochondrial fusion via oral supplementation of NR may be a potential strategy for delaying cardiac complications in patients with diabetes.


Author(s):  
Yafeng Wang ◽  
Yiran Xu ◽  
Kai Zhou ◽  
Shan Zhang ◽  
Yong Wang ◽  
...  

Abstract Radiotherapy is an effective tool in the treatment of malignant brain tumors, but irradiation-induced late-onset toxicity remains a major problem. The purpose of this study was to investigate if genetic inhibition of autophagy has an impact on subcortical white matter development in the juvenile mouse brain after irradiation. Ten-day-old selective neural Atg7 knockout (KO) mice and wild-type (WT) littermates were subjected to a single 6-Gy dose of whole-brain irradiation and evaluated at 5 days after irradiation. Neural Atg7 deficiency partially prevented myelin disruption compared to the WT mice after irradiation, as indicated by myelin basic protein staining. Irradiation induced oligodendrocyte progenitor cell loss in the subcortical white matter, and Atg7 deficiency partly prevented this. There was no significant change between the KO and WT mice in the number of microglia and astrocytes in the subcortical white matter after irradiation. Transcriptome analysis showed that the GO mitochondrial gene expression pathway was significantly enriched in the differentially expressed genes between the KO and WT group after irradiation. Compared with WT mice, expression of the mitochondrial fusion protein OPA1 and phosphorylation of the mitochondrial fission protein DRP1 (P-DRP1) were dramatically decreased in KO mice under physiological conditions. The protein levels of OPA1and P-DRP1 showed no differences in WT mice between the non-irradiated group and the irradiated group but had remarkably increased levels in the KO mice after irradiation. These results indicate that inhibition of autophagy reduces irradiation-induced subcortical white matter injury not by reducing inflammation, but by increasing mitochondrial fusion and inhibiting mitochondrial fission.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1779
Author(s):  
Yunsi Zheng ◽  
Anqi Luo ◽  
Xiaoquan Liu

Emerging evidence shows that mitochondria fusion/fission imbalance is related to the occurrence of hyperglycemia-induced vascular injury. To study the temporal dynamics of mitochondrial fusion and fission, we observed the alteration of mitochondrial fusion/fission proteins in a set of different high-glucose exposure durations, especially in the early stage of hyperglycemia. The in vitro results show that persistent cellular apoptosis and endothelial dysfunction can be induced rapidly within 12 hours’ high-glucose pre-incubation. Our results show that mitochondria maintain normal morphology and function within 4 hours’ high-glucose pre-incubation; with the extended high-glucose exposure, there is a transition to progressive fragmentation; once severe mitochondria fusion/fission imbalance occurs, persistent cellular apoptosis will develop. In vitro and in vivo results consistently suggest that mitochondrial fusion/fission homeostasis alterations trigger high-glucose-induced vascular injury. As the guardian of mitochondria, AMPK is suppressed in response to hyperglycemia, resulting in imbalanced mitochondrial fusion/fission, which can be reversed by AMPK stimulation. Our results suggest that mitochondrial fusion/fission’s staged homeostasis may be a predictive factor of diabetic cardiovascular complications.


Author(s):  
Golam M. Uddin ◽  
Rafa Abbas ◽  
Timothy E. Shutt

The dynamic processes of mitochondrial fusion and fission determine the shape of mitochondria, which can range from individual fragments to a hyperfused network, and influence mitochondrial function. Changes in mitochondrial shape can occur rapidly, allowing mitochondria to adapt to specific cues and changing cellular demands. Here, we will review what is known about how key proteins required for mitochondrial fusion and fission are regulated by their acetylation status, with acetylation promoting fission and deacetylation enhancing fusion. In particular, we will examine the roles of NAD+ dependant sirtuin deacetylases, which mediate mitochondrial acetylation, and how this post-translational modification provides an exquisite regulatory mechanism to co-ordinate mitochondrial function with metabolic demands of the cell.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Atsushi Morio ◽  
Rie Tsutsumi ◽  
Shiho Satomi ◽  
Takashi Kondo ◽  
Hirotsugu Miyoshi ◽  
...  

Abstract Background Coronary artery disease is a leading cause of morbidity and mortality among patients with diabetes. Previously, we demonstrated that branched-chain amino acids (BCAAs) showed cardioprotective effects against cardiac ischemia/reperfusion (I/R) injury. A recent study suggested that leucine (Leu), a BCAA, is a key amino acid involved in mammalian target of rapamycin (mTOR) activity and mitochondrial function. However, whether Leu has cardioprotective effects on diabetic hearts is unclear. In this study, we examined the preconditioning effect of Leu treatment on high-fat diet (HFD)-induced obese mouse which simulate prediabetic heart. Methods In vivo mice models of I/R injury were divided into the following groups: control, mTOR+/−, and high-fat diet (HFD)-induced obese groups. Mice were randomly administered with Leu, the mTOR inhibitor rapamycin (Rap), or Leu with Rap. Isolated rat cardiomyocytes were subjected to simulated I/R injury. Biochemical and mitochondrial functional assays were performed to evaluate the changes in mTOR activity and mitochondrial dynamics caused by Leu treatment. Results Leu-treated mice showed a significant reduction in infarct size when compared with the control group (34.8% ± 3.8% vs. 43.1% ± 2.4%, n = 7, p < 0.05), whereas Rap-treated mice did not show the protective effects of Leu. This preconditioning effect of Leu was attenuated in mTOR+/− mice. Additionally, Leu increased the percentage of fused mitochondria and the mitochondrial volume, and decreased the number of mitochondria per cell in isolated cardiomyocytes. In HFD-induced obese mice, Leu treatment significantly reduced infarct size (41.0% ± 1.1% vs. 51.0% ± 1.4%, n = 7, p < 0.05), which was not induced by ischemic preconditioning, and this effect was inhibited by Rap. Furthermore, we observed enhanced mTOR protein expression and mitochondrial fusion with decreased reactive oxygen species production with Leu treatment in HFD-induced obese mice, but not in mTOR+/− mice. Conclusions Leu treatment improved the damage caused by myocardial I/R injury by promoting mTOR activity and mitochondrial fusion on prediabetic hearts in mice.


Sign in / Sign up

Export Citation Format

Share Document