Design of a performance-adaptive proportional—integral—derivative controller for stochastic systems

Author(s):  
T Yamamoto ◽  
Y Ohnishi ◽  
S L Shah

In order to manufacture high-quality products it is necessary to regularly monitor the performance of the control loops that regulate the quality variables of interest. This paper describes a design scheme of performance-adaptive controllers which are based on the above control strategy. According to the proposed control scheme, the output prediction error is monitored regularly and system identification is initiated if this error exceeds a user-defined threshold. Subsequently proportional—integral—derivative (PID) parameters are updated for the new model. Optimal PID parameters are calculated based on the linear quadratic Gaussian (LQG) trade-off curve obtained for the reidentified process model. The behaviour of the proposed control scheme is numerically evaluated by some simulation examples.

2021 ◽  
pp. 107754632110055
Author(s):  
Abolfazl Simorgh ◽  
Abolhassan Razminia ◽  
Vladimir I Shiryaev

The second-order systems can capture the dynamics of a vast majority of industrial processes. However, the existence of uncertainty in second-order approximation of such processes is inevitable because the approximation may not be accurate or the operating condition changes, resulting in performance degradation or even instability. This article aims at designing a novel robust proportional–integral–derivative controller for the uncertain second-order delay-free and time-delay systems in an optimal manner. The method is simple, effective, and can efficiently improve the performance of the uncertain systems. The approach is based on the linear quadratic theory, in which by adding a new matrix in the quadratic cost function regarding the uncertainties, the stability of the perturbed system is guaranteed and proven for both time-delay and delay-free second-order cases. The comparison with the recent works in the literature supports the effectiveness of the proposed methodology.


Author(s):  
Jatin Kumar Pradhan ◽  
Arun Ghosh ◽  
Chandrashekhar Narayan Bhende

This article is concerned with designing a 2-degree-of-freedom multi-input multi-output proportional–integral–derivative controller to ensure linear quadratic regulator performance and H∞ performance using a non-iterative linear matrix inequality–based method. To design the controller, first, a relation between the state feedback gain and proportional–integral–derivative gain is obtained. As the gains of proportional–integral–derivative controller cannot, in general, be found out from this relation for arbitrary stabilizing state feedback gain, a suitable form of the matrices involved in linear matrix inequality–based state feedback design is then chosen to obtain the proportional–integral–derivative gains directly. The special structure of the above matrices allows one to design proportional–integral–derivative controller in non-iterative manner. As a result, multi-objective performances, such as linear quadratic regulator and H∞, can be achieved simultaneously without increasing the computational burden much. To enhance the reference-input-to-output characteristics, a feedforward gain is also introduced and designed to minimize certain closed-loop H∞ performance. The proposed control design method is applied for multi-input multi-output proportional–integral compensation of a laboratory-based quadruple-tank process. The performance of the compensation is studied through extensive simulations and experiments.


2018 ◽  
Vol 14 (1) ◽  
pp. 1-11
Author(s):  
Galih Irfan Firdaus

Roket merupakan sebuah peluru kendali atau suatu kendaraan terbang yang mendapatkan dorongan melalui reaksi roket secara cepat dengan bahan fluida dari keluaran mesin roket. Sistem Kendali Sirip Roket berbasis Mikrokontroller ATmega8 berguna untuk mengendalikan sirip roket khususnya bagian aileron.  Dibutuhkan komponen – komponen pendukung berupa Sensor Accelerometer, Sensor Gyroscope, ATmega8 dan Motor Servo. Alat pengendali sirip roket ini dapat digunakan untuk mengendalikan sirip roket bagian aileron pada saat posisi roket tidak stabil atau terjadi gerakan naik turun pada saat setelah diluncurkan, sehingga dapat menghasilkan penerbangan yang maksimal dalam mencapai sasaran.Perancangan yang  digunakan adalah jenis pengendalian dengan kontrol PID. PID (Proportional Integral Derivative controller) merupakan kontroller untuk menentukan presisi suatu sistem instrumentasi dengan karakteristik adanya umpan balik pada sistem tesebut. Pengontrol PID adalah pengontrol konvensional yang banyak dipakai dalam dunia industri. Karakteristik pengontrol PID sangat dipengaruhi oleh kontribusi besar dari ketiga parameter P, I dan D. Pemilihan konstanta Kp, Ki dan Kd akan mengakibatkan penonjolan sifat dari masing-masing elemen. Dalam perancangan sebuah sistem kendali menggunakan kontroller PID pada motor servo yang diharapkan mampu menggerakkan sirip naik dan sirip turun pada roket sehingga mampu menjaga kestabilan roket saat diluncurkan. Prosentase error pada proyek akhir ini adalah 0,5 %.Roket merupakan sebuah peluru kendali atau suatu kendaraan terbang yang mendapatkan dorongan melalui reaksi roket secara cepat dengan bahan fluida dari keluaran mesin roket. Sistem Kendali Sirip Roket berbasis Mikrokontroller ATmega8 berguna untuk mengendalikan sirip roket khususnya bagian aileron.  Dibutuhkan komponen – komponen pendukung berupa Sensor Accelerometer, Sensor Gyroscope, ATmega8 dan Motor Servo. Alat pengendali sirip roket ini dapat digunakan untuk mengendalikan sirip roket bagian aileron pada saat posisi roket tidak stabil atau terjadi gerakan naik turun pada saat setelah diluncurkan, sehingga dapat menghasilkan penerbangan yang maksimal dalam mencapai sasaran.Perancangan yang  digunakan adalah jenis pengendalian dengan kontrol PID. PID (Proportional Integral Derivative controller) merupakan kontroller untuk menentukan presisi suatu sistem instrumentasi dengan karakteristik adanya umpan balik pada sistem tesebut. Pengontrol PID adalah pengontrol konvensional yang banyak dipakai dalam dunia industri. Karakteristik pengontrol PID sangat dipengaruhi oleh kontribusi besar dari ketiga parameter P, I dan D. Pemilihan konstanta Kp, Ki dan Kd akan mengakibatkan penonjolan sifat dari masing-masing elemen. Dalam perancangan sebuah sistem kendali menggunakan kontroller PID pada motor servo yang diharapkan mampu menggerakkan sirip naik dan sirip turun pada roket sehingga mampu menjaga kestabilan roket saat diluncurkan. Prosentase error pada proyek akhir ini adalah 0,5 %.


Sign in / Sign up

Export Citation Format

Share Document