Exponential stability of anti-periodic solutions for neural networks with multiple discrete and distributed delays

Author(s):  
X Liu ◽  
J Cao

In this paper, the anti-periodic solutions are considered for generalized neural networks with multiple discrete delays and distributed delays. Several new sufficient conditions are established for ensuring the existence and exponential stability of anti-periodic solutions based on the Lyapunov method and M-matrix theory. It is shown that, by means of the techniques developed, the analysis of stability for anti-periodic solutions is different from the familiar periodic ones. The obtained results generalize and improve the earlier works. Two numerical examples are given to illustrate the effectiveness of the proposed theories.

2009 ◽  
Vol 2009 ◽  
pp. 1-15
Author(s):  
Yimin Zhang ◽  
Yongkun Li ◽  
Kuohui Ye

By the continuation theorem of coincidence degree andM-matrix theory, we obtain some sufficient conditions for the existence and exponential stability of periodic solutions for a class of generalized neural networks with arbitrary delays, which are milder and less restrictive than those of previous known criteria. Moreover our results generalize and improve many existing ones.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Qiming Liu ◽  
Rui Xu

A class of Cohen-Grossberg-type BAM neural networks with distributed delays and impulses are investigated in this paper. Sufficient conditions to guarantee the uniqueness and global exponential stability of the periodic solutions of such networks are established by using suitable Lyapunov function, the properties ofM-matrix, and some suitable mathematical transformation. The results in this paper improve the earlier publications.


2010 ◽  
Vol 2010 ◽  
pp. 1-17
Author(s):  
Chun Lu

The existence and global exponential stability of periodic solutions for a class of numerical discretization neural networks are considered. Using coincidence degree theory and Lyapunov method, sufficient conditions for the existence and global exponential stability of periodic solutions are obtained. Numerical simulations are given to illustrate the results.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaohui Xu ◽  
Jiye Zhang ◽  
Quan Xu ◽  
Zilong Chen ◽  
Weifan Zheng

This paper studies the global exponential stability for a class of impulsive disturbance complex-valued Cohen-Grossberg neural networks with both time-varying delays and continuously distributed delays. Firstly, the existence and uniqueness of the equilibrium point of the system are analyzed by using the corresponding property of M-matrix and the theorem of homeomorphism mapping. Secondly, the global exponential stability of the equilibrium point of the system is studied by applying the vector Lyapunov function method and the mathematical induction method. The established sufficient conditions show the effects of both delays and impulsive strength on the exponential convergence rate. The obtained results in this paper are with a lower level of conservatism in comparison with some existing ones. Finally, three numerical examples with simulation results are given to illustrate the correctness of the proposed results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guowei Yang ◽  
Yonggui Kao ◽  
Changhong Wang

This paper considers dynamical behaviors of a class of fuzzy impulsive reaction-diffusion delayed cellular neural networks (FIRDDCNNs) with time-varying periodic self-inhibitions, interconnection weights, and inputs. By using delay differential inequality,M-matrix theory, and analytic methods, some new sufficient conditions ensuring global exponential stability of the periodic FIRDDCNN model with Neumann boundary conditions are established, and the exponential convergence rate index is estimated. The differentiability of the time-varying delays is not needed. An example is presented to demonstrate the efficiency and effectiveness of the obtained results.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 321 ◽  
Author(s):  
Bing Li ◽  
Yongkun Li ◽  
Xiaofang Meng

In this paper, neutral-type competitive neural networks with mixed time-varying delays and leakage delays on time scales are proposed. Based on the contraction fixed-point theorem, some sufficient conditions that are independent of the backwards graininess function of the time scale are obtained for the existence and global exponential stability of almost periodic solutions of neural networks under consideration. The results obtained are brand new, indicating that the continuous time and discrete-time conditions of the network share the same dynamic behavior. Finally, two examples are given to illustrate the validity of the results obtained.


2017 ◽  
Vol 10 (4) ◽  
pp. 513-529
Author(s):  
Changjin Xu ◽  
Peiluan Li

Purpose The purpose of this paper is to study the existence and exponential stability of anti-periodic solutions of a class of shunting inhibitory cellular neural networks (SICNNs) with time-varying delays and continuously distributed delays. Design/methodology/approach The inequality technique and Lyapunov functional method are applied. Findings Sufficient conditions are obtained to ensure that all solutions of the networks converge exponentially to the anti-periodic solution, which are new and complement previously known results. Originality/value There are few papers that deal with the anti-periodic solutions of delayed SICNNs with the form negative feedback – aij(t)αij(xij(t)).


Sign in / Sign up

Export Citation Format

Share Document