scholarly journals Mode identification in impact-induced high-frequency vehicular driveline vibrations using an elasto-multi-body dynamics approach

Author(s):  
S Theodossiades ◽  
M Gnanakumarr ◽  
H Rahnejat ◽  
M Menday
Robotica ◽  
2018 ◽  
Vol 37 (3) ◽  
pp. 521-538 ◽  
Author(s):  
Wael Saab ◽  
Peter Racioppo ◽  
Anil Kumar ◽  
Pinhas Ben-Tzvi

SUMMARYThis paper presents the design, analysis, and experimental validation of a miniature modular inchworm robot (MMIR). Inchworm robots are capable of maneuvering in confined spaces due to their small size, a desirable characteristic for surveillance, exploration and search and rescue operations. This paper presents two generations of the MMIR (Version 1—V1 and Version 2—V2) that utilize anisotropic friction skin and an undulatory rectilinear gait to produce locomotion. This paper highlights design improvements and a multi-body dynamics approach to model and simulate the system. The MMIR V2 incorporates a slider-crank four-bar mechanism and a relative body revolute joint to produce high-frequency relative translation and rotation to increase forward velocity and enable turning capabilities. Friction analysis and locomotion experiments were conducted to assess the systems performance on various surfaces, validate the dynamic model and simulation results, and measure the maximum forward velocity. The MMIR V1 and V2 were able to achieve maximum forward velocities of 12.7 mm/s and 137.9 mm/s, respectively. These results are compared to reported results of similar robots published in the literature.


Author(s):  
M Gnanakumarr ◽  
S Theodossiades ◽  
H Rahnejat ◽  
M Menday

The paper investigates the conditions leading to the emergence and persistence of an acute metallic noise in light-truck drivelines. Sudden demands in torque in the presence of lash zones give rise to this phenomenon, which is onomatopoeically referred to as clonk. The study of clonk requires combined rigid multi-body dynamics and flexible body oscillations. The results show high-frequency contributions in the driveline vibrational response of certain structural modes of the driveshaft pieces, which are induced by remote impact of meshing transmission teeth through backlash. The numerically predicted spectrum of vibration shows good correlation with experimental measurements of radiated noise from a dynamic drivetrain rig.


2012 ◽  
Vol 8 (4) ◽  
pp. 660-664 ◽  
Author(s):  
K. T. Bates ◽  
P. L. Falkingham

Bite mechanics and feeding behaviour in Tyrannosaurus rex are controversial. Some contend that a modest bite mechanically limited T. rex to scavenging, while others argue that high bite forces facilitated a predatory mode of life. We use dynamic musculoskeletal models to simulate maximal biting in T. rex . Models predict that adult T. rex generated sustained bite forces of 35 000–57 000 N at a single posterior tooth, by far the highest bite forces estimated for any terrestrial animal. Scaling analyses suggest that adult T. rex had a strong bite for its body size, and that bite performance increased allometrically during ontogeny. Positive allometry in bite performance during growth may have facilitated an ontogenetic change in feeding behaviour in T. rex , associated with an expansion of prey range in adults to include the largest contemporaneous animals.


Author(s):  
H Lipkin ◽  
J Duffy

The theory of screws was largely developed by Sir Robert Stawell Ball over 100 years ago to investigate general problems in rigid body mechanics. Nowadays, screw theory is applied in many different but related forms including dual numbers, Plilcker coordinates and Lie algebra. An overview of these methodologies is presented along with a perspective on Ball. Screw theory has re-emerged after a hiatus to become an important tool in robot mechanics, mechanical design, computational geometry and multi-body dynamics.


2014 ◽  
Author(s):  
Michael S. Barton ◽  
David Corson ◽  
John Quigley ◽  
Babak Emami ◽  
Tanuj Kush

Author(s):  
Ruoxin Li ◽  
Qing Xiao ◽  
Lijun Li ◽  
Hao Liu

In this work, we numerically studied the steady swimming of a pufferfish driven by the undulating motion of its dorsal, anal and caudal fins. The simulations are based on experimentally measured kinematics. To model the self-propelled fish swimming, a Computational Fluid Dynamics (CFD) tool was coupled with a Multi-Body-Dynamics (MBD) technique. It is widely accepted that deformable/flexible or undulating fins are better than rigid fins in terms of propulsion efficiency. To elucidate the underlying mechanism, we established an undulating fins model based on the kinematics of live fish, and conducted a simulation under the same operating conditions as rigid fins. The results presented here agree with this view by showing that the contribution of undulating fins to propulsion efficiency is significantly larger than that of rigid fins.


Sign in / Sign up

Export Citation Format

Share Document