scholarly journals Effect of Two-Stage Injection on Unburned Hydrocarbon and Carbon Monoxide Emissions in Smokeless Low-Temperature Diesel Combustion with Ultra-High Exhaust Gas Recirculation

2010 ◽  
Vol 11 (5) ◽  
pp. 345-354 ◽  
Author(s):  
T Li ◽  
M Suzuki ◽  
H Ogawa
2009 ◽  
Vol 11 (1) ◽  
pp. 1-15 ◽  
Author(s):  
T Fuyuto ◽  
M Nagata ◽  
Y Hotta ◽  
K Inagaki ◽  
K Nakakita ◽  
...  

2020 ◽  
Vol 21 (10) ◽  
pp. 1857-1877 ◽  
Author(s):  
Tim Franken ◽  
Fabian Mauss ◽  
Lars Seidel ◽  
Maike Sophie Gern ◽  
Malte Kauf ◽  
...  

This work presents the assessment of direct water injection in spark-ignition engines using single cylinder experiments and tabulated chemistry-based simulations. In addition, direct water injection is compared with cooled low-pressure exhaust gas recirculation at full load operation. The analysis of the two knock suppressing and exhaust gas cooling methods is performed using the quasi-dimensional stochastic reactor model with a novel dual fuel tabulated chemistry model. To evaluate the characteristics of the autoignition in the end gas, the detonation diagram developed by Bradley and co-workers is applied. The single cylinder experiments with direct water injection outline the decreasing carbon monoxide emissions with increasing water content, while the nitrogen oxide emissions indicate only a minor decrease. The simulation results show that the engine can be operated at λ = 1 at full load using water–fuel ratios of up to 60% or cooled low-pressure exhaust gas recirculation rates of up to 30%. Both technologies enable the reduction of the knock probability and the decrease in the catalyst inlet temperature to protect the aftertreatment system components. The strongest exhaust temperature reduction is found with cooled low-pressure exhaust gas recirculation. With stoichiometric air–fuel ratio and water injection, the indicated efficiency is improved to 40% and the carbon monoxide emissions are reduced. The nitrogen oxide concentrations are increased compared to the fuel-rich base operating conditions and the nitrogen oxide emissions decrease with higher water content. With stoichiometric air–fuel ratio and exhaust gas recirculation, the indicated efficiency is improved to 43% and the carbon monoxide emissions are decreased. Increasing the exhaust gas recirculation rate to 30% drops the nitrogen oxide emissions below the concentrations of the fuel-rich base operating conditions.


2016 ◽  
Vol 18 (7) ◽  
pp. 717-731 ◽  
Author(s):  
David K Marsh ◽  
Alexander K Voice

In this work, a simple methodology was implemented to predict the onset of knock in spark-ignition engines and quantify the benefits of two practical knock mitigation strategies: cooled exhaust gas recirculation and syngas blending. Based on the results of this study, both cooled exhaust gas recirculation and the presence of syngas constituents in the end-gas substantially improved the knock-limited compression ratio of the engine. At constant load, 25% exhaust gas recirculation increased the knock-limited compression ratio from 9.0 to 10.8:1 (0.07 compression ratio per 1% exhaust gas recirculation) due to lower end-gas temperature and reactant (fuel and oxygen) concentrations. At exhaust gas recirculation rates above 43%, higher intake temperature outweighed the benefits of lower end-gas reactant concentration. At constant intake temperature, cooled exhaust gas recirculation was significantly more effective at all exhaust gas recirculation rates (0.10 compression ratio per 1% exhaust gas recirculation), and no diminishing returns or optimum was observed. Both hydrogen and carbon monoxide were also predicted to improve knock by reducing end-gas reactivity, likely through the conversion of high-reactivity hydroxy-radicals to less reactive peroxy-radicals. Hydrogen increased the knock-limited compression ratio by 1.1 per volume percent added at constant energy content. Carbon monoxide was less effective, increasing the knock-limited compression ratio by 0.38 per volume percent added. Combining 25% cooled exhaust gas recirculation with reformate produced from rich combustion at an equivalence ratio of 1.3 resulted in a predicted increase in the knock-limited compression ratio of 3.5, which agreed well with the published experimental engine data. The results show the extent to which syngas blending and cooled exhaust gas recirculation each contribute separately to knock mitigation and demonstrate that both can be effective knock mitigation strategies. Together, these solutions have the potential to increase the compression ratio and efficiency of spark-ignition engines.


Sign in / Sign up

Export Citation Format

Share Document