scholarly journals Selective Formation of Formic Acid, Oxalic Acid, and Carbon Monoxide by Electrochemical Reduction of Carbon Dioxide

1987 ◽  
Vol 60 (7) ◽  
pp. 2517-2522 ◽  
Author(s):  
Shoichiro Ikeda ◽  
Takehiko Takagi ◽  
Kaname Ito
ACS Catalysis ◽  
2017 ◽  
Vol 7 (7) ◽  
pp. 4822-4827 ◽  
Author(s):  
Jeremy T. Feaster ◽  
Chuan Shi ◽  
Etosha R. Cave ◽  
Toru Hatsukade ◽  
David N. Abram ◽  
...  

2018 ◽  
Author(s):  
Chandan Dey ◽  
Ronny Neumann

<p>A manganese substituted Anderson type polyoxometalate, [MnMo<sub>6</sub>O<sub>24</sub>]<sup>9-</sup>, tethered with an anthracene photosensitizer was prepared and used as catalyst for CO<sub>2</sub> reduction. The polyoxometalate-photosensitizer hybrid complex, obtained by covalent attachment of the sensitizer to only one face of the planar polyoxometalate, was characterized by NMR, IR and mass spectroscopy. Cyclic voltammetry measurements show a catalytic response for the reduction of carbon dioxide, thereby suggesting catalysis at the manganese site on the open face of the polyoxometalate. Controlled potentiometric electrolysis showed the reduction of CO<sub>2</sub> to CO with a TOF of ~15 sec<sup>-1</sup>. Further photochemical reactions showed that the polyoxometalate-anthracene hybrid complex was active for the reduction of CO<sub>2</sub> to yield formic acid and/or CO in varying amounts dependent on the reducing agent used. Control experiments showed that the attachment of the photosensitizer to [MnMo<sub>6</sub>O<sub>24</sub>]<sup>9-</sup> is necessary for photocatalysis.</p><div><br></div>


2019 ◽  
Vol 23 (04n05) ◽  
pp. 453-461
Author(s):  
Sumana Tawil ◽  
Hathaichanok Seelajaroen ◽  
Amorn Petsom ◽  
Niyazi Serdar Sariciftci ◽  
Patchanita Thamyongkit

A clam-shaped molecule comprising a Zn(II)-porphyrin and a Zn(II)-cyclam is synthesized and characterized. Its electrochemical behavior and catalytic activity for homogeneous electrochemical reduction of carbon dioxide (CO[Formula: see text] are investigated by cyclic voltammetry and compared with those of Zn(II)-meso-tetraphenylporphyrin and Zn(II)-cyclam. Under N2-saturated conditions, cyclic voltammetry of the featured complex has characteristics of its two constituents, but under CO2-saturated conditions, the target compound exhibits significant current enhancement. Iterative reduction under electrochemical conditions indicated the target compound has improved stability relative to Zn(II)-cyclam. Controlled potential electrolysis demonstrates that, without addition of water, methane (CH[Formula: see text] is the only detectable product with 1% Faradaic efficiency (FE). The formation of CH4 is not observed under the catalysis of the Zn(II)-porphyrin benchmark compound, indicating that the CO2-capturing function of the Zn(II)-cyclam unit contributes to the catalysis. Upon addition of 3% v/v water, the electrochemical reduction of CO2 in the presence of the target compound gives carbon monoxide (CO) with 28% FE. Dominance of CO formation under these conditions suggests enhancement of proton-coupled reduction. Integrated action of these Zn(II)-porphyrin and Zn(II)-cyclam units offers a notable example of a molecular catalytic system where the cyclam ring captures and brings CO2 into the proximity of the porphyrin catalysis center.


2020 ◽  
Vol MA2020-01 (5) ◽  
pp. 615-615
Author(s):  
Krisara Srimanon ◽  
Atiweena Krittayavathananon ◽  
Sangchai Sarawutanukul ◽  
Montree Sawangphruk

1930 ◽  
Vol 3 (3) ◽  
pp. 241-251 ◽  
Author(s):  
J. C. McLennan F.R.S. ◽  
J. V. S. Glass B.A.

This paper deals with the action of cathode rays on gases and gas mixtures. Methane, methane-oxygen mixtures, carbon monoxide and carbon monoxide-oxygen mixtures were examined. Methane gave small percentages of hydrogen and ethane. Methane and oxygen mixtures gave as gaseous products, carbon monoxide, carbon dioxide and hydrogen, the only other products being water and formic acid. The relative proportions of the products do not vary widely under a wide variation of conditions.The reaction was found to be of the first order with respect to pressure. The reaction rate increases linearly with the voltage up to a certain value, after which it becomes nearly independent of the voltage.The action of cathode rays on carbon monoxide produces carbon dioxide and a solid brown suboxide which is extremely soluble in water, and its composition corresponds to a formula (C3O)n. If the carbon monoxide is moist, no visible amount of solid or liquid is found and there is less carbon dioxide.Carbon monoxide-oxygen mixtures under the action of cathode rays form carbon dioxide. Presence of water vapor has a retarding effect on the reaction. For mixtures of the same composition the reaction rate is proportional to the total pressure. For dry mixtures the product increases with the carbon monoxide present; when moist it is much less, and independent of the carbon monoxide.


ChemSusChem ◽  
2011 ◽  
Vol 4 (9) ◽  
pp. 1301-1310 ◽  
Author(s):  
Arun S. Agarwal ◽  
Yumei Zhai ◽  
Davion Hill ◽  
Narasi Sridhar

Sign in / Sign up

Export Citation Format

Share Document