Highly Conductive Room Temperature Molten Salts Based on Small Trimethylalkylammonium Cations and Bis(trifluoromethylsulfonyl)imide

2000 ◽  
Vol 29 (8) ◽  
pp. 922-923 ◽  
Author(s):  
Hajime Matsumoto ◽  
Masahiro Yanagida ◽  
Kazumi Tanimoto ◽  
Masakatsu Nomura ◽  
Yukiko Kitagawa ◽  
...  
ChemInform ◽  
2010 ◽  
Vol 28 (12) ◽  
pp. no-no
Author(s):  
K. XU ◽  
S. ZHANG ◽  
C. A. ANGELL

1990 ◽  
Vol 1990-17 (1) ◽  
pp. 661-670 ◽  
Author(s):  
Setsuko Takahashi

2002 ◽  
Vol 57 (3-4) ◽  
pp. 129-135
Author(s):  
Hsin-Yi Hsu ◽  
Chao-Chen Yang

The conductivities of the binary room-temperature molten salt (RTMS) systems ZnCl2-N-nbutylpyridinium chloride (BPC), ZnCl2 -1-ethyl-3-methylimidazolium chloride (EMIC) and ZnCl2 - benzyltriethylammonium chloride (BTEAC) have been measured at different temperatures and compositions by a d.c. four-probes method. The conductivities of the three RTMS are in the order ZnCl2-EMIC > ZnCl2-BPC > ZnCl2-BTEAC. In ZnCl2-BPC the conductivity at 70 to 150 °C, is maximal for 40 mol% ZnCl2. In ZnCl2 - EMIC, the conductivity below 130 °C is almost constant for 30 to 50 mol% ZnCl2 and has the lowest activation energy 25.21 kJ/mol. For these two systems, the conductivities decrease rapidly beyond 50 mol% ZnCl2 owing to the rapid increase in cross-linking and resultant tightening of the polyelectrolyte structure. As to the ZnCl2-BTEAC system, the conductivities at 110 - 150 °C decrease slowly for 30 - 60 mol% ZnCl2. The conductivities of the ZnCl2-EMICmelt are compared with those of the AlCl3-EMIC melt previously studied. The stability of the ZnCl2-EMIC melt system is explored by the effect of the environment on the conductivity and the Far Transmission Infra Red (FTIR) spectrum. It reveals that the effect is slight, and that the ZnCl2-EMIC melt may be classified as stable.


Author(s):  
Barbara J. Kinzig ◽  
Paul Sutor ◽  
Gregory W. Sawyer ◽  
Alison Rennie ◽  
Pamela Dickrell ◽  
...  

Room temperature ionic liquids (RTILs) are molten salts with melting points at or below room temperature. RTILs have recently been recognized as novel lubricants. Only a few have previously been evaluated.


Sign in / Sign up

Export Citation Format

Share Document