scholarly journals Nicotinic Acetylcholine Receptors Mediate the Suppressive Effect of an Injection of Diluted Bee Venom into the GV3 Acupoint on Oxaliplatin-Induced Neuropathic Cold Allodynia in Rats

2015 ◽  
Vol 38 (5) ◽  
pp. 710-714 ◽  
Author(s):  
Heera Yoon ◽  
Min Joon Kim ◽  
Insoo Yoon ◽  
Dong Xing Li ◽  
Hyunsu Bae ◽  
...  
2017 ◽  
Vol 114 (10) ◽  
pp. E1825-E1832 ◽  
Author(s):  
Haylie K. Romero ◽  
Sean B. Christensen ◽  
Lorenzo Di Cesare Mannelli ◽  
Joanna Gajewiak ◽  
Renuka Ramachandra ◽  
...  

Opioids are first-line drugs for moderate to severe acute pain and cancer pain. However, these medications are associated with severe side effects, and whether they are efficacious in treatment of chronic nonmalignant pain remains controversial. Medications that act through alternative molecular mechanisms are critically needed. Antagonists of α9α10 nicotinic acetylcholine receptors (nAChRs) have been proposed as an important nonopioid mechanism based on studies demonstrating prevention of neuropathology after trauma-induced nerve injury. However, the key α9α10 ligands characterized to date are at least two orders of magnitude less potent on human vs. rodent nAChRs, limiting their translational application. Furthermore, an alternative proposal that these ligands achieve their beneficial effects by acting as agonists of GABABreceptors has caused confusion over whether blockade of α9α10 nAChRs is the fundamental underlying mechanism. To address these issues definitively, we developed RgIA4, a peptide that exhibits high potency for both human and rodent α9α10 nAChRs, and was at least 1,000-fold more selective for α9α10 nAChRs vs. all other molecular targets tested, including opioid and GABABreceptors. A daily s.c. dose of RgIA4 prevented chemotherapy-induced neuropathic pain in rats. In wild-type mice, oxaliplatin treatment produced cold allodynia that could be prevented by RgIA4. Additionally, in α9 KO mice, chemotherapy-induced development of cold allodynia was attenuated and the milder, temporary cold allodynia was not relieved by RgIA4. These findings establish blockade of α9-containing nAChRs as the basis for the efficacy of RgIA4, and that α9-containing nAChRs are a critical target for prevention of chronic cancer chemotherapy-induced neuropathic pain.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S586-S586 ◽  
Author(s):  
Kazuo Hashikawa ◽  
Hidefumi Yoshida ◽  
Nobukatsu Sawamoto ◽  
Shigetoshi Takaya ◽  
Chihiro Namiki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document