Influence of training on the blood pressure changes during lower body negative pressure in rats

1982 ◽  
Vol 14 (1) ◽  
pp. 81-90 ◽  
Author(s):  
CHARLES M. TIPTON ◽  
RONALD D. MATTHES ◽  
TOBY G. BEDFORD
2001 ◽  
Vol 86 (2) ◽  
pp. 559-564 ◽  
Author(s):  
Ichiro Hidaka ◽  
Shin-Ichi Ando ◽  
Hideaki Shigematsu ◽  
Koji Sakai ◽  
Soko Setoguchi ◽  
...  

By injecting noise into the carotid sinus baroreceptors, we previously showed that heart rate (HR) responses to weak oscillatory tilt were enhanced via a mechanism known as “stochastic resonance.” It remains unclear, however, whether the same responses would be observed when using oscillatory lower body negative pressure (LBNP), which would unload the cardiopulmonary baroreceptors with physically negligible effects on the arterial system. Also, the vasomotor sympathetic activity directly controlling peripheral resistance against hypotensive stimuli was not observed. We therefore investigated the effects of weak (0 to approximately −10 mmHg) oscillatory (0.03 Hz) LBNP on HR and muscle sympathetic nerve activity (MSNA) while adding incremental noise to the carotid sinus baroreceptors via a pneumatic neck chamber. The signal-to-noise ratio of HR, cardiac interbeat interval, and total MSNA were all significantly improved by increasing noise intensity, while there was no significant change in the arterial blood pressure in synchronized with the oscillatory LBNP. We conclude that the stochastic resonance, affecting both HR and MSNA, results from the interaction of noise with the signal in the brain stem, where the neuronal inputs from the arterial and cardiopulmonary baroreceptors first come together in the nucleus tractus solitarius. Also, these results indicate that the noise could induce functional improvement in human blood pressure regulatory system in overcoming given hypotensive stimuli.


2001 ◽  
Vol 281 (2) ◽  
pp. R468-R475 ◽  
Author(s):  
John S. Floras ◽  
Gary C. Butler ◽  
Shin-Ichi Ando ◽  
Steven C. Brooks ◽  
Michael J. Pollard ◽  
...  

Lower body negative pressure (LBNP; −5 and −15 mmHg) was applied to 14 men (mean age 44 yr) to test the hypothesis that reductions in preload without effect on stroke volume or blood pressure increase selectively muscle sympathetic nerve activity (MSNA), but not the ratio of low- to high-frequency harmonic component of spectral power (PL/PH), a coarse-graining power spectral estimate of sympathetic heart rate (HR) modulation. LBNP at −5 mmHg lowered central venous pressure and had no effect on stroke volume (Doppler) or systolic blood pressure but reduced vagal HR modulation. This latter finding, a manifestation of arterial baroreceptor unloading, refutes the concept that low levels of LBNP interrogate, selectively, cardiopulmonary reflexes. MSNA increased, whereas PL/PH and HR were unchanged. This discordance is consistent with selectivity of efferent sympathetic responses to nonhypotensive LBNP and with unloading of tonically active sympathoexcitatory atrial reflexes in some subjects. Hypotensive LBNP (−15 mmHg) increased MSNA and PL/PH, but there was no correlation between these changes within subjects. Therefore, HR variability has limited utility as an estimate of the magnitude of orthostatic changes in sympathetic discharge to muscle.


1997 ◽  
Vol 22 (4) ◽  
pp. 351-367
Author(s):  
Tania L. Culham ◽  
Gabrielle K. Savard

Several studies indicate that carotid baroreflex responsiveness is a good predictor of orthostatic tolerance. Two groups of healthy women with high (HI) and low (LO) carotid baroreflex responsiveness were studied (a) to determine any differences in the level of orthostatic tolerance of the two groups, and (b) to study the hemodynamic strategies used by HI and LO responders to regulate arterial pressure during the orthostatic challenge of lower body negative pressure (LBNP). Orthostatic tolerance was similar between the two groups, whereas the hemodynamic strategies recruited to maintain blood pressure at −40 mmHg LBNP differed: HI responders exhibited greater LBNP-induced decreases in stroke volume and cardiac output, as well as a greater increase in peripheral resistance compared to LO responders (p < .05). In addition, a significant increase in plasma renin activity during LBNP was found in the HI responders only. No significant between-group differences were found in arterial and cardiopulmonary control of vascular resistance or arterial haroreflex control of heart rate during LBNP. Key words: arterial pressure, carotid baroreceptor, lower body negative pressure, orthostatic tolerance, stroke volume


1992 ◽  
Vol 83 (5) ◽  
pp. 535-540 ◽  
Author(s):  
P. J. Lacolley ◽  
B. M. Pannier ◽  
M. A. Slama ◽  
J. L. Cuche ◽  
A. P. G. Hoeks ◽  
...  

1. Pulsatile changes in the diameter of the common carotid artery were studied transcutaneously using an echo-tracking technique in 15 normal subjects: eight subjects before and during application of graded lower-body negative pressure from −5 to −15 mmHg, and seven subjects before and during weight-bearing head-up tilt at 30 and 60 degrees. 2. In concomitant studies of changes in forearm vascular resistance, it was seen that mild lower-body negative pressure produced deactivation of cardiopulmonary receptors without changes in systemic blood pressure or heart rate. 3. After lower-body negative pressure, a significant decrease in carotid arterial diastolic diameter [from 0.662 ± 0.028 to 0.624 ± 0.033 cm (lower-body negative pressure −10 mmHg) and 0.640 ± 0.030 cm lower-body negative pressure −15 mmHg), P<0.001 and <0.05] was observed. 4. After head-up tilt, carotid arterial diameter was also significantly decreased at 30 and 60 degrees, whereas a significant increase in heart rate occurred only at 60 degrees and mean blood pressure did not change. 5. The study provides evidence that the geometry of the arterial wall is substantially modified by noninvasive manoeuvres such as head-up tilting and lower-body negative pressure. The latter is assumed to selectively deactivate human cardiopulmonary receptors, but the present data suggest that local changes may also influence carotid baroreceptors.


1992 ◽  
Vol 76 (6) ◽  
pp. 961-966 ◽  
Author(s):  
Cole A. Giller ◽  
Benjamin D. Levine ◽  
Yves Meyer ◽  
Jay C. Buckey ◽  
Lynda D. Lane ◽  
...  

✓ Although severe hypovolemia can lead to hypotension and neurological decline, many patients with neurosurgical disorders experience a significant hypovolemia while autonomic compensatory mechanisms maintain a normal blood pressure. To assess the effects of normotensive hypovolemia upon cerebral hemodynamics, transcranial Doppler ultrasound monitoring of 13 healthy volunteers was performed during graded lower-body negative pressure of up to −50 mm Hg, an accepted laboratory model for reproducing the physiological effects of hypovolemia. Middle cerebral artery flow velocity declined by 16% ± 4% (mean ± standard error of the mean) and the ratio between transcranial Doppler ultrasound pulsatility and systemic pulsatility rose 22% ± 8%, suggesting cerebral small-vessel vasoconstriction in response to the sympathetic activation unmasked by lower-body negative pressure. This vasoconstriction may interfere with the autoregulatory response to a sudden fall in blood pressure, and may explain the common observation of neurological deficit during hypovolemia even with a normal blood pressure.


1971 ◽  
Vol 41 (9) ◽  
pp. 628-632
Author(s):  
Shigeru Ogawa ◽  
Toru Akagawa ◽  
Masayasu Takasugi ◽  
Masayoshi Ishibashi ◽  
Eiichi Yasunari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document