Fluctuations in Isometric Force Are Associated With Motor Unit Discharge Rate Variability in Older Adults

2004 ◽  
Vol 36 (Supplement) ◽  
pp. S123
Author(s):  
Jennifer L. Stephenson ◽  
Katrina S. Maluf ◽  
Brian L. Tracy ◽  
Sandra K. Hunter ◽  
Roger M. Enoka
2004 ◽  
Vol 36 (Supplement) ◽  
pp. S123 ◽  
Author(s):  
Jennifer L. Stephenson ◽  
Katrina S. Maluf ◽  
Brian L. Tracy ◽  
Sandra K. Hunter ◽  
Roger M. Enoka

1995 ◽  
Vol 79 (6) ◽  
pp. 1908-1913 ◽  
Author(s):  
G. Kamen ◽  
S. V. Sison ◽  
C. C. Du ◽  
C. Patten

A reduction in maximal force production is a common observation in older individuals. In an effort to determine whether aging is accompanied by reductions in central motoneuron drive limiting motor performance, motor unit discharge records were obtained from seven young (21–33 yr) and seven older (> 67 yr) adults. Informed consent was obtained from all subjects. The task required the subject to perform a maximal abduction of the second digit under isometric conditions. Motor unit potentials in the first dorsal interosseous were monitored by using a selective four-wire needle electrode and identified off-line with the aid of a Dantec electromyograph. The maximal discharge rate in the older adults (31.1 impulses/s) was significantly smaller (P < 0.05) than that in the younger subjects (50.9 impulses/s). These findings suggest that reductions in maximal force capability in older adults are partially due to an impaired ability to fully drive the surviving motor units.


2000 ◽  
Vol 83 (1) ◽  
pp. 441-452 ◽  
Author(s):  
Wanxiang Yao ◽  
Rew J. Fuglevand ◽  
Roger M. Enoka

The purpose of the study was to determine the effect of motor-unit synchronization on the surface electromyogram (EMG) and isometric force using a computer model of muscle contraction. The EMG and force were simulated by generating muscle fiber action potentials, defining motor-unit mechanical characteristics and territories, estimating motor-unit action potentials, specifying motor-unit discharge times, and imposing various levels of motor-unit synchronization. The output (EMG and force) was simulated at 11 levels of excitation, ranging from 5 to 100% of maximum. To synchronize motor-unit activity, selected motor-unit discharge times were adjusted; however, the number of motor units recruited and the average discharge rate of each unit was constant across synchronization conditions for a given level of excitation. Two levels of synchronization were imposed on the discharge times: a moderate and a high level, which approximated the experimentally observed range of motor-unit synchronization. The moderate level of synchrony caused the average EMG to increase by ∼65%, whereas the high level caused a 130% increase in the EMG with respect to the no-synchrony condition. Neither synchrony condition influenced the magnitude of the average force. However, motor-unit synchronization did increase the amplitude of the fluctuations in the simulated force, especially at intermediate levels of excitation. In conclusion, motor-unit synchronization increased the amplitude of the average rectified EMG and decreased the steadiness of the force exerted by the muscle in simulated contractions.


2001 ◽  
Vol 24 (4) ◽  
pp. 542-550 ◽  
Author(s):  
Carolynn Patten ◽  
Gary Kamen ◽  
Daniel M. Rowland

2005 ◽  
Vol 94 (4) ◽  
pp. 2878-2887 ◽  
Author(s):  
Carol J. Mottram ◽  
Evangelos A. Christou ◽  
François G. Meyer ◽  
Roger M. Enoka

The rate of change in the fluctuations in motor output differs during the performance of fatiguing contractions that involve different types of loads. The purpose of this study was to examine the contribution of frequency modulation of motor unit discharge to the fluctuations in the motor output during sustained contractions with the force and position tasks. In separate tests with the upper arm vertical and the elbow flexed to 1.57 rad, the seated subjects maintained either a constant upward force at the wrist (force task) or a constant elbow angle (position task). The force and position tasks were performed in random order at a target force equal to 3.6 ± 2.1% (mean ± SD) of the maximal voluntary contraction (MVC) force above the recruitment threshold of an isolated motor unit from the biceps brachii. Each subject maintained the two tasks for an identical duration (161 ± 93 s) at a mean target force of 22.4 ± 13.6% MVC. As expected, the rate of increase in the fluctuations in motor output (force task: SD for detrended force; position task: SD for vertical acceleration) was greater for the position task than the force task ( P < 0.001). The amplitude of the coefficient of variation (CV) and the power spectra for motor unit discharge were similar between tasks ( P > 0.1) and did not change with time ( P > 0.1), and could not explain the different rates of increase in motor output fluctuations for the two tasks. Nonetheless, frequency modulation of motor unit discharge differed during the two tasks and predicted ( P < 0.001) both the CV for discharge rate (force task: 1–3, 12–13, and 14–15 Hz; position task: 0–1, and 1–2 Hz) and the fluctuations in motor output (force task: 5–6, 9–10, 12–13, and 14–15 Hz; position task: 6–7, 14–15, 17–19, 20–21, and 23–24 Hz). Frequency modulation of motor unit discharge rate differed for the force and position tasks and influenced the ability to sustain steady contractions.


Author(s):  
Benjamin Ian Goodlich ◽  
Sean A Horan ◽  
Justin J Kavanagh

Serotonin (5-HT) is a neuromodulator that is critical for regulating the excitability of spinal motoneurons and the generation of muscle torque. However, the role of 5-HT in modulating human motor unit activity during rapid contractions has yet to be assessed. Nine healthy participants (23.7 ± 2.2 yr) ingested 8 mg of the competitive 5-HT2 antagonist cyproheptadine in a double-blinded, placebo-controlled, repeated-measures experiment. Rapid dorsiflexion contractions were performed at 30%, 50% and 70% of maximal voluntary contraction (MVC), where motor unit activity was assessed by high-density surface electromyographic decomposition. A second protocol was performed where a sustained, fatigue-inducing dorsiflexion contraction was completed prior to undertaking the same 30%, 50% and 70% MVC rapid contractions and motor unit analysis. Motor unit discharge rate (p < 0.001) and rate of torque development (RTD; p = 0.019) for the unfatigued muscle were both significantly lower for the cyproheptadine condition. Following the fatigue inducing contraction, cyproheptadine reduced motor unit discharge rate (p < 0.001) and RTD (p = 0.024), where the effects of cyproheptadine on motor unit discharge rate and RTD increased with increasing contraction intensity. Overall, these results support the viewpoint that serotonergic effects in the central nervous system occur fast enough to regulate motor unit discharge rate during rapid powerful contractions.


2005 ◽  
Vol 32 (4) ◽  
pp. 533-540 ◽  
Author(s):  
Brian L. Tracy ◽  
Katrina S. Maluf ◽  
Jennifer L. Stephenson ◽  
Sandra K. Hunter ◽  
Roger M. Enoka

Physiotherapy ◽  
2019 ◽  
Vol 105 ◽  
pp. e46
Author(s):  
E. Martinez-Valdes ◽  
G. Boccia ◽  
M. Nawaz ◽  
F. Negro ◽  
A. Rainoldi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document