Blockade of 5-HT2 receptors suppresses rate of torque development and motor unit discharge rate during rapid contractions

Author(s):  
Benjamin Ian Goodlich ◽  
Sean A Horan ◽  
Justin J Kavanagh

Serotonin (5-HT) is a neuromodulator that is critical for regulating the excitability of spinal motoneurons and the generation of muscle torque. However, the role of 5-HT in modulating human motor unit activity during rapid contractions has yet to be assessed. Nine healthy participants (23.7 ± 2.2 yr) ingested 8 mg of the competitive 5-HT2 antagonist cyproheptadine in a double-blinded, placebo-controlled, repeated-measures experiment. Rapid dorsiflexion contractions were performed at 30%, 50% and 70% of maximal voluntary contraction (MVC), where motor unit activity was assessed by high-density surface electromyographic decomposition. A second protocol was performed where a sustained, fatigue-inducing dorsiflexion contraction was completed prior to undertaking the same 30%, 50% and 70% MVC rapid contractions and motor unit analysis. Motor unit discharge rate (p < 0.001) and rate of torque development (RTD; p = 0.019) for the unfatigued muscle were both significantly lower for the cyproheptadine condition. Following the fatigue inducing contraction, cyproheptadine reduced motor unit discharge rate (p < 0.001) and RTD (p = 0.024), where the effects of cyproheptadine on motor unit discharge rate and RTD increased with increasing contraction intensity. Overall, these results support the viewpoint that serotonergic effects in the central nervous system occur fast enough to regulate motor unit discharge rate during rapid powerful contractions.

2010 ◽  
Vol 108 (6) ◽  
pp. 1550-1562 ◽  
Author(s):  
Jakob L. Dideriksen ◽  
Dario Farina ◽  
Martin Baekgaard ◽  
Roger M. Enoka

The purpose of the study was to expand a model of motor unit recruitment and rate coding ( 30 ) to simulate the adjustments that occur during a fatiguing contraction. The major new components of the model were the introduction of time-varying parameters for motor unit twitch force, recruitment, discharge rate, and discharge variability, and a control algorithm that estimates the net excitation needed by the motoneuron pool to maintain a prescribed target force. The fatigue-induced changes in motor unit activity in the expanded model are a function of changes in the metabolite concentrations that were computed with a compartment model of the intra- and extracellular spaces. The model was validated by comparing the simulation results with data available from the literature and experimentally recorded in the present study during isometric contractions of the first dorsal interosseus muscle. The output of the model was able to replicate a number of experimental findings, including the time to task failure for a range of target forces, the changes in motor unit discharge rates, the skewness and kurtosis of the interspike interval distributions, discharge variability, and the discharge characteristics of newly recruited motor units. The model output provides an integrative perspective of the adjustments during fatiguing contractions that are difficult to measure experimentally.


2008 ◽  
Vol 104 (3) ◽  
pp. 739-746 ◽  
Author(s):  
Malgorzata Klass ◽  
Stéphane Baudry ◽  
Jacques Duchateau

The aim of this study was to investigate the association between the rate of torque development and maximal motor unit discharge frequency in young and elderly adults as they performed rapid submaximal contractions with the ankle dorsiflexors. Recordings were obtained of the torque exerted by the dorsiflexors during the isometric contractions and the surface and intramuscular electromyograms (EMGs) from the tibialis anterior. The maximal rate of torque development and integrated EMG (percentage of total EMG burst) at peak rate of torque development during fast contractions were lower in elderly than young adults by 48% ( P < 0.05) and 16.5% ( P < 0.05), respectively. The young adults, but not the elderly adults, exhibited a positive association ( r2 = 0.33; P < 0.01) between the integrated EMG computed up to the peak rate of torque development and the maximal rate of torque development achieved during the fast contractions. These age-related changes during fast voluntary contractions were accompanied by a decline ( P < 0.001) in motor unit discharge frequency (19, 28, and 34% for first 3 interspike intervals, respectively) and in the percentage of units (45%; P < 0.05) that exhibited double discharges (doublets) at brief intervals (<5 ms). Because aging decreased the maximal rate of torque development of fast voluntary contractions to a greater extent (∼10%) than that of an electrically evoked twitch, collectively the results indicate that the age-related decline in maximal motor unit discharge frequency likely limit, in addition to the slowing of muscle contractile properties, the performance of fast voluntary contractions.


2002 ◽  
Vol 93 (5) ◽  
pp. 1616-1621 ◽  
Author(s):  
C. S. Klein ◽  
C. L. Rice ◽  
T. D. Ivanova ◽  
S. J. Garland

This study examined, in nine old men (82 ± 4 yr), whether there is an association between the magnitude of change in motor unit discharge rate and the amount of twitch potentiation after a conditioning contraction (CC). The evoked twitch force and motor unit discharge rate during isometric ramp-and-hold contractions (10–18 s) of the triceps brachii muscle at 10, 20, and 30% of the maximal voluntary contraction were determined before and 10 s, 2 min, 6 min, and 11 min after a 5-s CC at 75% maximal voluntary contraction. After the CC, there was a potentiation of twitch force (approximately twofold), and the discharge rate of the 47 sampled motor units declined ( P < 0.05) an average of 1 Hz 10 s after the CC, compared with the control condition. The CC had no effect on the variability (coefficient of variation) of both force and discharge rate, as well as the electromyographic activity recorded over the triceps brachii and biceps brachii muscles. In contrast to our earlier study of young men (Klein CS, Ivanova TD, Rice CL, and Garland SJ, Neurosci Lett 316: 153–156, 2001), the magnitude of the reduction in discharge rate after the CC was not associated ( r = 0.06) with the amount of twitch potentiation. These findings suggest an age-related alteration in the neural strategy for adjusting motor output to a muscle after a CC.


2005 ◽  
Vol 94 (4) ◽  
pp. 2878-2887 ◽  
Author(s):  
Carol J. Mottram ◽  
Evangelos A. Christou ◽  
François G. Meyer ◽  
Roger M. Enoka

The rate of change in the fluctuations in motor output differs during the performance of fatiguing contractions that involve different types of loads. The purpose of this study was to examine the contribution of frequency modulation of motor unit discharge to the fluctuations in the motor output during sustained contractions with the force and position tasks. In separate tests with the upper arm vertical and the elbow flexed to 1.57 rad, the seated subjects maintained either a constant upward force at the wrist (force task) or a constant elbow angle (position task). The force and position tasks were performed in random order at a target force equal to 3.6 ± 2.1% (mean ± SD) of the maximal voluntary contraction (MVC) force above the recruitment threshold of an isolated motor unit from the biceps brachii. Each subject maintained the two tasks for an identical duration (161 ± 93 s) at a mean target force of 22.4 ± 13.6% MVC. As expected, the rate of increase in the fluctuations in motor output (force task: SD for detrended force; position task: SD for vertical acceleration) was greater for the position task than the force task ( P < 0.001). The amplitude of the coefficient of variation (CV) and the power spectra for motor unit discharge were similar between tasks ( P > 0.1) and did not change with time ( P > 0.1), and could not explain the different rates of increase in motor output fluctuations for the two tasks. Nonetheless, frequency modulation of motor unit discharge differed during the two tasks and predicted ( P < 0.001) both the CV for discharge rate (force task: 1–3, 12–13, and 14–15 Hz; position task: 0–1, and 1–2 Hz) and the fluctuations in motor output (force task: 5–6, 9–10, 12–13, and 14–15 Hz; position task: 6–7, 14–15, 17–19, 20–21, and 23–24 Hz). Frequency modulation of motor unit discharge rate differed for the force and position tasks and influenced the ability to sustain steady contractions.


Physiotherapy ◽  
2019 ◽  
Vol 105 ◽  
pp. e46
Author(s):  
E. Martinez-Valdes ◽  
G. Boccia ◽  
M. Nawaz ◽  
F. Negro ◽  
A. Rainoldi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document