rate of torque development
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 67)

H-INDEX

16
(FIVE YEARS 4)

Author(s):  
Brooke Davidson ◽  
Avery Hinks ◽  
Brian H. Dalton ◽  
Ryota Akagi ◽  
Geoffrey A. Power

Time-dependent measures consisting of rate of torque development (RTD), rate of velocity development (RVD), and rate of neuromuscular activation can be used to evaluate explosive muscular performance, which becomes critical when performing movements throughout limited ranges of motion (ROM). Using a HUMAC NORM dynamometer, seven males (27 ± 7 years) and six females (22 ± 3 years) underwent 8 weeks of maximal isometric dorsiflexion training 3 days/week. One leg was trained at 0° (short-muscle tendon unit (MTU) length) and the other at 40° of plantar flexion (long-MTU length). RTD and rate of neuromuscular activation were evaluated during 'fast' maximal isometric contractions. Power, RVD, and rate of neuromuscular activation were assessed during maximal isotonic contractions in four conditions (small (40° to 30° of plantar flexion) ROM at 10 and 50% MVC; large (40° to 0° of plantar flexion) ROM at 10 and 50% MVC) for both legs, pre- and post-training. Despite no change in rate of neuromuscular activation following training, peak power, RTD, and RVD increased at both MTU lengths (p < 0.05). Strong relationships (R2=0.73) were observed between RTD and peak power in the small ROM, indicating that fast time-dependent measures are critical for optimal performance when ROM is constrained. Meanwhile, strong relationships (R2=0.90) between RVD and power were observed at the 50% load, indicating that RVD is critical when limited by load and ROM is not confined. Maximal isometric dorsiflexion training can be used to improve time-dependent measures (RTD, RVD) to minimize power attenuation when ROM is restricted.


Author(s):  
Benjamin Ian Goodlich ◽  
Sean A Horan ◽  
Justin J Kavanagh

Serotonin (5-HT) is a neuromodulator that is critical for regulating the excitability of spinal motoneurons and the generation of muscle torque. However, the role of 5-HT in modulating human motor unit activity during rapid contractions has yet to be assessed. Nine healthy participants (23.7 ± 2.2 yr) ingested 8 mg of the competitive 5-HT2 antagonist cyproheptadine in a double-blinded, placebo-controlled, repeated-measures experiment. Rapid dorsiflexion contractions were performed at 30%, 50% and 70% of maximal voluntary contraction (MVC), where motor unit activity was assessed by high-density surface electromyographic decomposition. A second protocol was performed where a sustained, fatigue-inducing dorsiflexion contraction was completed prior to undertaking the same 30%, 50% and 70% MVC rapid contractions and motor unit analysis. Motor unit discharge rate (p < 0.001) and rate of torque development (RTD; p = 0.019) for the unfatigued muscle were both significantly lower for the cyproheptadine condition. Following the fatigue inducing contraction, cyproheptadine reduced motor unit discharge rate (p < 0.001) and RTD (p = 0.024), where the effects of cyproheptadine on motor unit discharge rate and RTD increased with increasing contraction intensity. Overall, these results support the viewpoint that serotonergic effects in the central nervous system occur fast enough to regulate motor unit discharge rate during rapid powerful contractions.


2021 ◽  
pp. 1-7
Author(s):  
Mitchel A. Magrini ◽  
Ryan J. Colquhoun ◽  
Matt C. Ferrell ◽  
Sydnie R. Fleming ◽  
Jacob A. Mota ◽  
...  

2021 ◽  
pp. 105527
Author(s):  
Raiff Simplicio da Silva ◽  
Mikhail Santos Cerqueira ◽  
Daniel Germano Maciel ◽  
Stephano Tomaz da Silva ◽  
Marianna Celeste Cordeiro De Figueiredo ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Marcel Bahia Lanza ◽  
Kelly Rock ◽  
Victoria Marchese ◽  
Odessa Addison ◽  
Vicki L. Gray

Understanding the physiological variables that contribute to a functional task provides important information for trainers and clinicians to improve functional performance. The hip abductors and adductors muscles appear to be important in determining the performance of some functional tasks; however, little is known about the relationship of the hip abductor/adductors muscle strength, activation, and size with functional performance. This study aimed to investigate the relationship of maximum torque, rate of torque development (RTD), rate of activation (RoA), and muscle thickness of the hip abductors [tensor fascia latae (TFL) and gluteus medius (GM)] and adductor magnus muscle with the Four Square Step Test (FSST) and the two-leg hop test in healthy young adults. Twenty participants (five males) attended one testing session that involved ultrasound image acquisition, maximal isometric voluntary contractions (hip abduction and hip adduction) while surface electromyography (EMG) was recorded, and two functional tests (FSST and two-leg side hop test). Bivariate correlations were performed between maximum voluntary torque (MVT), RTD at 50, 100, 200, and 300ms, RoA at 0–50, 0–100, 0–200, and 0–300, and muscle thickness with the dynamic stability tests. For the hip abduction, MVT (r=−0.455, p=0.044) and RTD300 (r=−0.494, p=0.027) was correlated with the FSST. GM RoA50 (r=−0.481, p=0.032) and RoA100 (r=−0.459, p=0.042) were significantly correlated with the two-leg side hop test. For the hip adduction, there was a significant correlation between the FSST and RTD300 (r=−0.500, p=0.025), while the two-leg side hop test was correlated with RTD200 (r=0.446, p=0.049) and RTD300 (r=0.594, p=0.006). Overall, the ability of the hip abductor and adductor muscles to produce torque quickly, GM rapid activation, and hip abductor MVT is important for better performance on the FSST and two-leg hop tests. However, muscle size appears not to influence the same tests.


Author(s):  
Victor R.A. Cossich ◽  
Conrado T. Laett ◽  
Ubiratã F. Gavilão ◽  
Anthony J. Blazevich ◽  
Carlos G. de Oliveira

Sign in / Sign up

Export Citation Format

Share Document