The Interaction of Physical Inactivity and Reduced Levels of Estrogens on Skeletal Muscle Force Production

2006 ◽  
Vol 38 (Supplement) ◽  
pp. 44
Author(s):  
Marybeth Brown
2016 ◽  
Vol 48 ◽  
pp. 897
Author(s):  
Jamie Whitfield ◽  
George J. F. Heigenhauser ◽  
Lawrence L. Spriet ◽  
Graham P. Holloway ◽  
A. Russell Tupling

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Antonio Michelucci ◽  
Simona Boncompagni ◽  
Laura Pietrangelo ◽  
Maricela García-Castañeda ◽  
Takahiro Takano ◽  
...  

Exercise promotes the formation of intracellular junctions in skeletal muscle between stacks of sarcoplasmic reticulum (SR) cisternae and extensions of transverse-tubules (TT) that increase co-localization of proteins required for store-operated Ca2+ entry (SOCE). Here, we report that SOCE, peak Ca2+ transient amplitude and muscle force production during repetitive stimulation are increased after exercise in parallel with the time course of TT association with SR-stacks. Unexpectedly, exercise also activated constitutive Ca2+ entry coincident with a modest decrease in total releasable Ca2+ store content. Importantly, this decrease in releasable Ca2+ store content observed after exercise was reversed by repetitive high-frequency stimulation, consistent with enhanced SOCE. The functional benefits of exercise on SOCE, constitutive Ca2+ entry and muscle force production were lost in mice with muscle-specific loss of Orai1 function. These results indicate that TT association with SR-stacks enhances Orai1-dependent SOCE to optimize Ca2+ dynamics and muscle contractile function during acute exercise.


2017 ◽  
Vol 49 (5S) ◽  
pp. 903
Author(s):  
Ryan M. Broxterman ◽  
Gwenael Layec ◽  
Thomas J. Hureau ◽  
David E. Morgan ◽  
Amber D. Bledsoe ◽  
...  

2013 ◽  
Vol 30 (4) ◽  
pp. 486-501 ◽  
Author(s):  
Ben J. Edwards ◽  
Samuel A. Pullinger ◽  
Jonathan W. Kerry ◽  
William R. Robinson ◽  
Tom P. Reilly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document