Transient Increases In Blood Pressure After Spontaneous Bursts Of Muscle Sympathetic Nerve Activity: Contributions Of Cardiac Output And Systemic Vascular Conductance

2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 156
Author(s):  
Seth T. Fairfax ◽  
Lauro C. Vianna ◽  
Paul J. Fadel
2013 ◽  
Vol 304 (5) ◽  
pp. H759-H766 ◽  
Author(s):  
Seth T. Fairfax ◽  
Jaume Padilla ◽  
Lauro C. Vianna ◽  
Michael J. Davis ◽  
Paul J. Fadel

Previous studies in humans attempting to assess sympathetic vascular transduction have related large reflex-mediated increases in muscle sympathetic nerve activity (MSNA) to associated changes in limb vascular resistance. However, such procedures do not provide insight into the ability of MSNA to dynamically control vascular tone on a beat-by-beat basis. Thus we examined the influence of spontaneous MSNA bursts on leg vascular conductance (LVC) and how variations in MSNA burst pattern (single vs. multiple bursts) and burst size may affect the magnitude of the LVC response. In 11 young men, arterial blood pressure, common femoral artery blood flow, and MSNA were continuously recorded during 20 min of supine rest. Signal averaging was used to characterize percent changes in LVC for 15 cardiac cycles following heartbeats associated with and without MSNA bursts. LVC significantly decreased following MSNA bursts, reaching a nadir during the 6th cardiac cycle (single bursts, −2.9 ± 1.1%; and multiple bursts, −11.0 ± 1.4%; both, P < 0.001). Individual MSNA burst amplitudes and the total amplitude of consecutive bursts were related to the magnitude of peak decreases in LVC. In contrast, cardiac cycles without MSNA bursts were associated with a significant increase in LVC (+3.1 ± 0.5%; P < 0.001). Total vascular conductance decreased in parallel with LVC also reaching a nadir around the peak rise in arterial blood pressure following an MSNA burst. Collectively, these data are the first to assess beat-by-beat sympathetic vascular transduction in resting humans, demonstrating robust and dynamic decreases in LVC following MSNA bursts, an effect that was absent for cardiac cycles without MSNA bursts.


2019 ◽  
Vol 317 (1) ◽  
pp. H1-H12 ◽  
Author(s):  
Allan Robson Kluser Sales ◽  
Marcelo Vailati Negrão ◽  
Laura Testa ◽  
Larissa Ferreira-Santos ◽  
Raphaela Villar Ramalho Groehs ◽  
...  

The purpose of the present study was to test the hypothesis that doxorubicin (DX) and cyclophosphamide (CY) adjuvant chemotherapy (CHT) acutely impairs neurovascular and hemodynamic responses in women with breast cancer. Sixteen women (age: 47.0 ± 2.0 yr; body mass index: 24.2 ± 1.5 kg/m) with stage II-III breast cancer and indication for adjuvant CHT underwent two experimental sessions, saline (SL) and CHT. In the CHT session, DX (60 mg/m2) and CY (600 mg/m2) were administered over 45 min. In the SL session, a matching SL volume was infused in 45 min. Muscle sympathetic nerve activity (MSNA) from peroneal nerve (microneurography), calf blood flow (CBF; plethysmography) and calf vascular conductance (CVC), heart rate (HR; electrocardiography), and beat-to-beat blood pressure (BP; finger plethysmography) were measured at rest before, during, and after each session. Venous blood samples (5 ml) were collected before and after both sessions for assessment of circulating endothelial microparticles (EMPs; flow cytometry), a surrogate marker for endothelial damage. MSNA and BP responses were increased ( P < 0.001), whereas CBF and CVC responses were decreased ( P < 0.001), during and after CHT session when compared with SL session. Interestingly, the vascular alterations were also observed at the molecular level through an increased EMP response to CHT ( P = 0.03, CHT vs. SL session). No difference in HR response was observed ( P > 0.05). Adjuvant CHT with DX and CY in patients treated for breast cancer increases sympathetic nerve activity and circulating EMP levels and, in addition, reduces muscle vascular conductance and elevates systemic BP. These responses may be early signs of CHT-induced cardiovascular alterations and may represent potential targets for preventive interventions. NEW & NOTEWORTHY It is known that chemotherapy regimens increase the risk of cardiovascular events in patients treated for cancer. Here, we identified that a single cycle of adjuvant chemotherapy with doxorubicin and cyclophosphamide in women treated for breast cancer dramatically increases sympathetic nerve activity and circulating endothelial microparticle levels, reduces the muscle vascular conductance, and elevates systemic blood pressure.


2002 ◽  
Vol 80 (12) ◽  
pp. 1136-1144 ◽  
Author(s):  
J K Shoemaker ◽  
A Vovk ◽  
D A Cunningham

We tested the hypothesis that integrated sympathetic and cardiovascular reflexes are modulated by systemic CO2 differently in hypoxia than in hyperoxia (n = 7). Subjects performed a CO2 rebreathe protocol that equilibrates CO2 partial pressures between arterial and venous blood and that elevates end tidal CO2 (PETCO2) from ~40 to ~58 mmHg. This test was repeated under conditions where end tidal oxygen levels were clamped at 50 (hypoxia) or 200 (hyperoxia) mmHg. Heart rate (HR; EKG), stroke volume (SV; Doppler ultrasound), blood pressure (MAP; finger plethysmograph), and muscle sympathetic nerve activity (MSNA) were measured continuously during the two protocols. MAP at 40 mmHg PETCO2 (i.e., the first minute of the rebreathe) was greater during hypoxia versus hyperoxia (P < 0.05). However, the increase in MAP during the rebreathe (P < 0.05) was similar in hypoxia (16±3 mmHg) and hyperoxia (17 ± 2 mmHg PETCO2). The increase in cardiac output (Q) at 55 mmHg PETCO2 was greater in hypoxia (2.61 ± 0.7 L/min) versus hyperoxia (1.09 ± 0.44 L/min) (P < 0.05). In both conditions the increase in Q was due to elevations in both HR and SV (P < 0.05). Systemic vascular conductance (SVC) increased to similar absolute levels in both conditions but rose earlier during hypoxia (>50 mmHg PETCO2) than hyperoxia (>55 mmHg). MSNA increased earlier during hypoxic hypercapnia (>45 mmHg) compared with hyperoxic hypercapnia (>55 mmHg). Thus, in these conscious humans, the dose–response effect of PETCO2 on the integrated cardiovascular responses was shifted to the left during hypoxic hypercapnia. The combined data indicate that peripheral chemoreceptors exert important influence over cardiovascular reflex responses to hypercapnia. Key words: blood pressure, cardiac output, muscle sympathetic nerve activity, sympathetic nervous system, end tidal CO2, hypoxia.


2013 ◽  
Vol 304 (12) ◽  
pp. H1615-H1623 ◽  
Author(s):  
Jacqueline K. Limberg ◽  
Barbara J. Morgan ◽  
William G. Schrage ◽  
Jerome A. Dempsey

In patients with hypertension, volitional slowing of the respiratory rate has been purported to reduce arterial pressure via withdrawal of sympathetic tone. We examined the effects of paced breathing at 7, 14, and 21 breaths/min, with reciprocal changes in tidal volume, on muscle sympathetic nerve activity, forearm blood flow, forearm vascular conductance, and blood pressure in 21 men and women, 8 of whom had modest elevations in systemic arterial pressure. These alterations in breathing frequency and volume did not affect steady-state levels of sympathetic activity, blood flow, vascular conductance, or blood pressure (all P > 0.05), even though they had the expected effect on sympathetic activity within breaths (i.e., increased modulation during low-frequency/high-tidal volume breathing) ( P < 0.001). These findings were consistent across subjects with widely varied baseline levels of sympathetic activity (4-fold), mean arterial pressure (78–110 mmHg), and vascular conductance (15-fold), and those who became hypocapnic during paced breathing vs. those who maintained normocapnia. These findings challenge the notion that slow, deep breathing lowers arterial pressure by suppressing steady-state sympathetic outflow.


2010 ◽  
Vol 299 (3) ◽  
pp. H925-H931 ◽  
Author(s):  
G. S. Gilmartin ◽  
M. Lynch ◽  
R. Tamisier ◽  
J. W. Weiss

Chronic intermittent hypoxia (CIH) is thought to be responsible for the cardiovascular disease associated with obstructive sleep apnea (OSA). Increased sympathetic activation, altered vascular function, and inflammation are all putative mechanisms. We recently reported (Tamisier R, Gilmartin GS, Launois SH, Pepin JL, Nespoulet H, Thomas RJ, Levy P, Weiss JW. J Appl Physiol 107: 17–24, 2009) a new model of CIH in healthy humans that is associated with both increases in blood pressure and augmented peripheral chemosensitivity. We tested the hypothesis that exposure to CIH would also result in augmented muscle sympathetic nerve activity (MSNA) and altered vascular reactivity contributing to blood pressure elevation. We therefore exposed healthy subjects between the ages of 20 and 34 yr ( n = 7) to 9 h of nocturnal intermittent hypoxia for 28 consecutive nights. Cardiovascular and hemodynamic variables were recorded at three time points; MSNA was collected before and after exposure. Diastolic blood pressure (71 ± 1.3 vs. 74 ± 1.7 mmHg, P < 0.01), MSNA [9.94 ± 2.0 to 14.63 ± 1.5 bursts/min ( P < 0.05); 16.89 ± 3.2 to 26.97 ± 3.3 bursts/100 heartbeats (hb) ( P = 0.01)], and forearm vascular resistance (FVR) (35.3 ± 5.8 vs. 55.3 ± 6.5 mmHg·ml−1·min·100 g tissue, P = 0.01) all increased significantly after 4 wk of exposure. Forearm blood flow response following ischemia of 15 min (reactive hyperemia) fell below baseline values after 4 wk, following an initial increase after 2 wk of exposure. From these results we conclude that the increased blood pressure following prolonged exposure to CIH in healthy humans is associated with sympathetic activation and augmented FVR.


2013 ◽  
Vol 305 (8) ◽  
pp. H1238-H1245 ◽  
Author(s):  
Christopher E. Schwartz ◽  
Elisabeth Lambert ◽  
Marvin S. Medow ◽  
Julian M. Stewart

Withdrawal of muscle sympathetic nerve activity (MSNA) may not be necessary for the precipitous fall of peripheral arterial resistance and arterial pressure (AP) during vasovagal syncope (VVS). We tested the hypothesis that the MSNA-AP baroreflex entrainment is disrupted before VVS regardless of MSNA withdrawal using the phase synchronization between blood pressure and MSNA during head-up tilt (HUT) to measure reflex coupling. We studied eight VVS subjects and eight healthy control subjects. Heart rate, AP, and MSNA were measured during supine baseline and at early, mid, late, and syncope stages of HUT. Phase synchronization indexes, measuring time-dependent differences between MSNA and AP phases, were computed. Directionality indexes, indicating the influence of AP on MSNA (neural arc) and MSNA on AP (peripheral arc), were computed. Heart rate was greater in VVS compared with control subjects during early, mid, and late stages of HUT and significantly declined at syncope ( P = 0.04). AP significantly decreased during mid, late, and syncope stages of tilt in VVS subjects only ( P = 0.001). MSNA was not significantly different between groups during HUT ( P = 0.700). However, the phase synchronization index significantly decreased during mid and late stages in VVS subjects but not in control subjects ( P < .001). In addition, the neural arc was significantly affected more than the peripheral arc before syncope. In conclusion, VVS is accompanied by a loss of the synchronous AP-MSNA relationship with or without a loss in MSNA at faint. This provides insight into the mechanisms behind the loss of vasoconstriction and drop in AP independent of MSNA at the time of vasovagal faint.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Jian Cui ◽  
Matthew D Muller ◽  
Allen R Kunselman ◽  
Cheryl Blaha ◽  
Lawrence I Sinoway

Epidemiological data suggest that blood pressure tends to be higher in winter and lower in summer, particularly in the elderly. Moreover, hospitalization and mortality rates due to cardiovascular disease have higher rates in winter than summer. Whether autonomic adjustment including muscle sympathetic nerve activity (MSNA) varies with season is unclear. To test the hypothesis that resting MSNA varies along the seasons, we retrospectively analyzed the supine baseline (6 min) MSNA and heart rate (from ECG) of 57 healthy subjects (33M, 24F, 29 ± 1 yrs, range 22-64 yrs) from studies in our laboratory (room temperature ~23 °C). Each of these subjects from central Pennsylvania was studied during 2 or more seasons (total 231 visits). A linear-mixed effects model, which is an extension of the analysis of variance model accounting for repeated measurements (i.e. season) per subject, was used to assess the association of season with the cardiovascular outcomes. The Tukey-Kramer procedure was used to account for multiple comparisons testing between the seasons. MSNA burst rate in winter (21.3 ± 1.0 burst/min) was significantly greater than in summer (13.7 ± 1.0 burst/min, P < 0.001), spring (17.5 ± 1.6 burst/min, P = 0.04) and fall (17.0 ± 1.2 burst/min, P < 0.002). There was no significant difference in MSNA in other comparisons (spring vs. summer, P = 0.12; spring vs. fall, P = 0.99; summer vs. fall, P = 0.054). Heart rate (63.6 ± 1.1 vs. 60.8 ± 1.2 beats/min, P = 0.048) was significantly greater in winter compared to summer. Blood pressure (automated sphygmomanometry of the brachial artery) was not significantly different between seasons. The results suggest that baseline sympathetic nerve activity varies along the seasons, with peak levels evident in winter. We speculate that the seasonal MSNA variation may contribute to seasonal variations in cardiovascular morbidity and mortality.


Sign in / Sign up

Export Citation Format

Share Document