scholarly journals Vagal Withdrawal Is Not Dependent On Oxygen Availability Or Exercise Intensity During Upper-Body Exercise

2019 ◽  
Vol 51 (Supplement) ◽  
pp. 398-399
Author(s):  
Nicolas W. Clark ◽  
Michael B. La Monica ◽  
Valéria Panissa ◽  
Tristan M. Starling-Smith ◽  
Jeffrey R. Stout ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heidi E. Hintsala ◽  
Rasmus I. P. Valtonen ◽  
Antti Kiviniemi ◽  
Craig Crandall ◽  
Juha Perkiömäki ◽  
...  

AbstractExercise is beneficial to cardiovascular health, evidenced by reduced post-exercise central aortic blood pressure (BP) and wave reflection. We assessed if post-exercise central hemodynamics are modified due to an altered thermal state related to exercise in the cold in patients with coronary artery disease (CAD). CAD patients (n = 11) performed moderate-intensity lower-body exercise (walking at 65–70% of HRmax) and rested in neutral (+ 22 °C) and cold (− 15 °C) conditions. In another protocol, CAD patients (n = 15) performed static (five 1.5 min work cycles, 10–30% of maximal voluntary contraction) and dynamic (three 5 min workloads, 56–80% of HRmax) upper-body exercise at the same temperatures. Both datasets consisted of four 30-min exposures administered in random order. Central aortic BP and augmentation index (AI) were noninvasively assessed via pulse wave analyses prior to and 25 min after these interventions. Lower-body dynamic exercise decreased post-exercise central systolic BP (6–10 mmHg, p < 0.001) and AI (1–6%, p < 0.001) both after cold and neutral and conditions. Dynamic upper-body exercise lowered central systolic BP (2–4 mmHg, p < 0.001) after exposure to both temperatures. In contrast, static upper-body exercise increased central systolic BP after exposure to cold (7 ± 6 mmHg, p < 0.001). Acute dynamic lower and upper-body exercise mainly lowers post-exercise central BP in CAD patients irrespective of the environmental temperature. In contrast, central systolic BP was elevated after static exercise in cold. CAD patients likely benefit from year-round dynamic exercise, but hemodynamic responses following static exercise in a cold environment should be examined further.Clinical trials.gov: NCT02855905 04/08/2016.


1983 ◽  
Vol 54 (5) ◽  
pp. 1403-1407 ◽  
Author(s):  
M. M. Toner ◽  
M. N. Sawka ◽  
L. Levine ◽  
K. B. Pandolf

The present study examined the influence that distributing exercise between upper (arm crank exercise) and lower (cycle exercise) body muscle groups had on cardiorespiratory responses to constant power output (PO) exercise. Six male volunteers completed five submaximal exercise bouts of 7-min duration at both 76 and 109 W. The arm PO/total PO (% arm) for these bouts was approximately 0, 20, 40, 60, and 100%. At 76 W, O2 uptake (VO2) did not change (P greater than 0.05) from 0 to approximately 20% arm (approximately 1.30 1 x min-1) but increased with increasing percent arm values up to 100% (1.58 1 x min-1). At 109 W, VO2 increased throughout the range of 0 (1.70 1 x min-1) to 100% arm (2.33 1 x min-1). In general, minute ventilation (VE) and respiratory exchange ratio (R) increased with increased percent arm values at 76 and 109 W. The heart rate (HR) responses remained unchanged from 0 to 60% arm at both 76 and 109 W; however, between 60 and 100% arm, a 26-beats x min-1 increase was observed at 76 W (143 beats x min-1 at 100% arm) and a 45-beats x min-1 increase at 109 W (174 beats x min-1 at 100% arm). These data suggested that during upper body exercise, the increased VO2 associated with increased percent arm values was not accompanied by an elevated HR response when at least 40% of the PO was performed by the lower body. This might be attributed to a facilitated venous return and/or a decreased total peripheral resistance when the lower body was involved in the exercise.


1983 ◽  
Vol 54 (1) ◽  
pp. 113-117 ◽  
Author(s):  
M. N. Sawka ◽  
M. E. Foley ◽  
N. A. Pimental ◽  
M. M. Toner ◽  
K. B. Pandolf

The purpose of this investigation was to evaluate four protocols for their effectiveness in eliciting maximal aerobic power (peak VO2) during arm-crank exercise. Comparisons were made 1) between a continuous (CON) and an intermittent (INT) protocol (both employed a crank rate of 50 rpm) and 2) among the CON protocols employing crank rates of 30, 50, or 70 rpm. For the first group of experiments no significant (P greater than 0.05) differences were found between the CON and INT protocols for peak VO2, maximal pulmonary ventilation (VEmax), maximal heart rate (HRmax), or maximal blood lactate (LAmax) responses. For the second group of experiments, the CON-50 was compared with the CON-30 and CON-70 protocols. In comparison to the CON-50, significantly higher peak VO2 (+10%) and VEmax (+14%) responses were elicited by the CON-70 protocol, whereas significantly lower peak VO2 (-11%), VEmax (-23%), HRmax (-8%), and LAmax (-29%) responses were elicited by the CON-30 protocol. Of the arm-crank protocols examined the combination of a continuous design and a crank rate of 70 rpm provided the most effective protocol to elicit peak VO2 values.


Sign in / Sign up

Export Citation Format

Share Document