Relationship between Solid Flow Rate and Pressure Drop in the Riser of a Pressurized Circulating Fluidized Bed

2016 ◽  
Vol 49 (7) ◽  
pp. 595-601 ◽  
Author(s):  
Muhammad Shahzad Khurram ◽  
Jeong-Hoo Choi ◽  
Yoo Sube Won ◽  
A-Reum Jeong ◽  
Ho-Jung Ryu
2010 ◽  
Vol 203 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Esmail R. Monazam ◽  
Rupen Panday ◽  
Lawrence J. Shadle

2011 ◽  
Vol 383-390 ◽  
pp. 6537-6542
Author(s):  
Wen Yi Chen ◽  
Xin Liu ◽  
Xiao Xu Fan ◽  
Lei Zhe Chu ◽  
Yi Mei Yang ◽  
...  

Using the Gidaspow model as the momentum exchange coefficient to take a full-loop simulation of miniature circulating fluidized bed gasifier (CFBG) in the lab, and taking mutual influence of different parts in consideration, it focus on the gas-solid flow structure in the riser in this paper. The heterogeneous behavior in the CFBG riser and the radial profiles of solid volume fraction under different solid inventories in simulation are showed in this paper as a replenishment of certain data which are hard to measure in experiments. The results showed it can’t form an obvious core-annulus flow because of the riser’s high height-diameter ratio and the big refeed line diameter. There are clusters growing and dissipation in a short time. A turning point of pressure drop may be seem as a separation of dense area and dilute area.The three-dimensional (3D) simulation revealed the solid flux and the pressure drop agree with the experimental data.


1997 ◽  
Vol 91 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Youchu Li ◽  
Yongqi Lu ◽  
Fengming Wang ◽  
Kai Han ◽  
Wensheng Mi ◽  
...  

Author(s):  
Ricardo Nava de Sousa ◽  
Julia Volkmann ◽  
Cristian Ricardo Schwatz ◽  
Christine Boos ◽  
Rodrigo Koerich Decker ◽  
...  

1999 ◽  
Author(s):  
Subhadeep Gan ◽  
Donald E. Beasley

Abstract A laboratory scale experimental facility which models a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) has been developed; this facility is designed to examine the effect of an opposing secondary flow having an oscillatory component on a bubbling fluidized bed. The secondary flow is oriented in a vertical direction. The secondary flow is introduced into the bubbling bed through a tailpipe that extends through the bed and ends just above the porous polyethylene distributor. A pulsed flow simulator that employs a small displacement of a relatively large piston with variable drive radius and speed provides the oscillatory component of the secondary flow. The fluidized bed test section has a cross-sectional flow area of 30.5 by 30.5 cm with a height of 53 cm. Heat exchanger surfaces are modeled by two symmetric horizontal cylinders housed in the test section. The following test parameters are controlled: the primary flow rate, the mean secondary flow rate, the pulsation frequency and the amplitude of the secondary flow. Pressure taps are located just above the distributor and in the freeboard region to measure overall bed pressure drop. The facility is operated with a range of particles from 345 μm to 715 μm and a range of superficial fluidization velocities corresponding to the bubble flow regime. Fluidization curves were generated for traditional fluidization, using the primary flow through the porous distributor, with both primary and a steady secondary flow, and with primary and a pulsed secondary flow. Significant departures from the linear Darcy flow curves in the fixed bed region were observed, and attributed to significant local fluidization. Time resolved measurements of the overall bed pressure drop clearly indicate phase-locking behavior of the overall bed pressure drop with imposed frequency. Bubbles formed in pulse-stabilized fluidization are significantly smaller than in traditional fluidization, as observed through video recording of the present bed.


Sign in / Sign up

Export Citation Format

Share Document