scholarly journals Role of an intracellular Ca store in trepibutone (AA-149)-induced relaxation of the depolarized smooth muscle of the guinea-pig taenia coli.

1981 ◽  
Vol 31 (4) ◽  
pp. 593-599 ◽  
Author(s):  
Hiroshi SATOH ◽  
Ikuko INADA ◽  
Yoshitaka MAKI
2001 ◽  
Vol 280 (5) ◽  
pp. C1090-C1096 ◽  
Author(s):  
C. Wu ◽  
C. H. Fry

The role of Na+/Ca2+ exchange in regulating intracellular Ca2+ concentration ([Ca2+]i) in isolated smooth muscle cells from the guinea pig urinary bladder was investigated. Incremental reduction of extracellular Na+ concentration resulted in a graded rise of [Ca2+]i; 50–100 μM strophanthidin also increased [Ca2+]i. A small outward current accompanied the rise of [Ca2+]i in low-Na+ solutions (17.1 ± 1.8 pA in 29.4 mM Na+). The quantity of Ca2+ influx through the exchanger was estimated from the charge carried by the outward current and was ∼30 times that which is necessary to account for the rise of [Ca2+]i, after correction was made for intracellular Ca2+ buffering. Ca2+ influx through the exchanger was able to load intracellular Ca2+ stores. It is concluded that the level of resting [Ca2+]i is not determined by the exchanger, and under resting conditions (membrane potential −50 to −60 mV), there is little net flux through the exchanger. However, a small rise of intracellular Na+ concentration would be sufficient to generate significant net Ca2+ influx.


1978 ◽  
Vol 85 (2) ◽  
pp. 172-175
Author(s):  
A. A. Galkin ◽  
D. A. Sarkisyan ◽  
E. N. Timin ◽  
B. I. Khodorov

2002 ◽  
Vol 92 (4) ◽  
pp. 1594-1602 ◽  
Author(s):  
Michele Sweeney ◽  
Sharon S. McDaniel ◽  
Oleksandr Platoshyn ◽  
Shen Zhang ◽  
Ying Yu ◽  
...  

Asthma is characterized by airway inflammation, bronchial hyperresponsiveness, and airway obstruction by bronchospasm and bronchial wall thickening due to smooth muscle hypertrophy. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) may serve as a shared signal transduction element that causes bronchial constriction and bronchial wall thickening in asthma. In this study, we examined whether capacitative Ca2+ entry (CCE) induced by depletion of intracellular Ca2+ stores was involved in agonist-mediated bronchial constriction and bronchial smooth muscle cell (BSMC) proliferation. In isolated bronchial rings, acetylcholine (ACh) induced a transient contraction in the absence of extracellular Ca2+ because of Ca2+ release from intracellular Ca2+ stores. Restoration of extracellular Ca2+in the presence of atropine, an M-receptor blocker, induced a further contraction that was apparently caused by a rise in [Ca2+]cyt due to CCE. In single BSMC, amplitudes of the store depletion-activated currents ( I SOC) and CCE were both enhanced when the cells proliferate, whereas chelation of extracellular Ca2+ with EGTA significantly inhibited the cell growth in the presence of serum. Furthermore, the mRNA expression of TRPC1, a transient receptor potential channel gene, was much greater in proliferating BSMC than in growth-arrested cells. Blockade of the store-operated Ca2+channels by Ni2+ decreased I SOC and CCE and markedly attenuated BSMC proliferation. These results suggest that upregulated TRPC1 expression, increased I SOC, enhanced CCE, and elevated [Ca2+]cyt may play important roles in mediating bronchial constriction and BSMC proliferation.


Sign in / Sign up

Export Citation Format

Share Document