Automatic Fruit Sorting by Non-Destructive Determination of Quality Parameters Using Visible/Near Infrared to Improve Wine Quality: I. Red Wine Production

NIR news ◽  
2013 ◽  
Vol 24 (8) ◽  
pp. 6-8 ◽  
Author(s):  
Magali Lafontaine ◽  
Maximilian Freund ◽  
Kai-Uwe Vieth ◽  
Christian Negara
2016 ◽  
Vol 197 ◽  
pp. 1207-1214 ◽  
Author(s):  
Emanuel José Nascimento Marques ◽  
Sérgio Tonetto de Freitas ◽  
Maria Fernanda Pimentel ◽  
Celio Pasquini

1997 ◽  
Vol 5 (3) ◽  
pp. 135-148 ◽  
Author(s):  
S. Sollinger ◽  
M. Voges

The production of cellulose fibres by wet fibres spinning requires a careful monitoring of the spinning bath and especially the spinning solution in terms of product control and for quality assurance purposes. The chemical composition as well as the ripening of the spinning solution are of major importance for maintaining a constant product quality. The conventional determination of the quality parameters of the viscose spinning solution are rather time- and labour-intensive due to the fact that several independent analytical procedures are involved which score low in time efficiency themselves. Briefly, the complete characterisation of the spinning solution requires an iodometric titration of the cellulose xanthogenate (γ-number), an acidimetric titration of the sodium hydroxide (NaOH) content, a UV-VIS spectroscopic determination of the trithiocarbonate (TTC) content and a time-consuming gravimetric cellulose content determination. Sometimes, also, a colloid chemical determination of the degree of ripening (Hottenroth number) is performed in the plant control laboratory. With this work, an approach will be demonstrated, which enables the substitution of these numerous analytical procedures by a single and time-efficient method—a VIS-NIR spectroscopic technique. Therefore, it is possible to determine the parameters: NaOH, TTC, cellulose xanthogenate content and the cellulose content of the viscose spinning solution simultaneously with a reasonable precision within a few minutes.


2018 ◽  
Vol 6 (4) ◽  
pp. 1109-1118 ◽  
Author(s):  
Zhenying Zhu ◽  
Shangbing Chen ◽  
Xueyou Wu ◽  
Changrui Xing ◽  
Jian Yuan

2020 ◽  
Vol 4 (4) ◽  
pp. 151 ◽  
Author(s):  
Alena Smirnova ◽  
Georgii Konoplev ◽  
Nikolay Mukhin ◽  
Oksana Stepanova ◽  
Ulrike Steinmann

Milk is a product that requires quality control at all stages of production: from the dairy farm, processing at the dairy plant to finished products. Milk is a complex multiphase polydisperse system, whose components not only determine the quality and price of raw milk, but also reflect the physiological state of the herd. Today’s production volumes and rates require simple, fast, cost-effective, and accurate analytical methods, and most manufacturers want to move away from methods that use reagents that increase analysis time and move to rapid analysis methods. The review presents methods for the rapid determination of the main components of milk, examines their advantages and disadvantages. Optical spectroscopy is a fast, non-destructive, precise, and reliable tool for determination of the main constituents and common adulterants in milk. While mid-infrared spectroscopy is a well-established off-line laboratory technique for the routine quality control of milk, near-infrared technologies provide relatively low-cost and robust solutions suitable for on-site and in-line applications on milking farms and dairy production facilities. Other techniques, discussed in this review, including Raman spectroscopy, atomic spectroscopy, molecular fluorescence spectroscopy, are also used for milk analysis but much less extensively. Acoustic methods are also suitable for non-destructive on-line analysis of milk. Acoustic characterization can provide information on fat content, particle size distribution of fat and proteins, changes in the biophysical properties of milk over time, the content of specific proteins and pollutants. The basic principles of ultrasonic techniques, including transmission, pulse-echo, interferometer, and microbalance approaches, are briefly described and milk parameters measured with their help, including frequency ranges and measurement accuracy, are given.


Sign in / Sign up

Export Citation Format

Share Document