chemical determination
Recently Published Documents


TOTAL DOCUMENTS

358
(FIVE YEARS 30)

H-INDEX

34
(FIVE YEARS 1)

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2236
Author(s):  
Maria Sole Facioni ◽  
Simona Dominici ◽  
Francesca Marescotti ◽  
Rosanna Covucci ◽  
Isabella Taglieri ◽  
...  

Lactose intolerance (LI) is the symptomatic condition that characterizes subjects unable to digest lactose. The main solution consists of reducing or eliminating lactose from one’s diet, and so dairy products, particularly cheeses, are often the first foods excluded. The purpose of this study is to contribute to this topic by creating an updated list of naturally lactose-free (NLF) cheeses. Twenty-five PDO (Protected Designation of Origin) cheeses were selected and analyzed to determine their lactose content. At the same time, interviews with the PDO quality control consortia were carried out to understand which parameters are involved in lactose reduction, based on the cheeses’ product specifications. The analytical techniques used here for lactose determination are the most sensitive (HPAEC-PAD and LC/MS-MS), given their low limit of quantification (LOQ) of less than 10 mg/kg. The majority of selected PDO cheeses resulted in a lactose content less than the LOQ. Because of the high variability allowed in PDO cheeses’ operative conditions, it would be better to case-by-case examine the PDO cheese specification and declare the product as NLF after repeated analysis. The results of the chemical determination of this research allowed to draw up a very useful list of PDO cheeses for both consumers and nutritionists that could be identified as NLF.


2021 ◽  
Vol 11 (18) ◽  
pp. 8276
Author(s):  
Oscar Vidal-Casanella ◽  
Oscar Núñez ◽  
Mercè Granados ◽  
Javier Saurina ◽  
Sonia Sentellas

Phenolic compounds such as phenolic acids, flavonoids, and stilbenes comprise an enormous family of bioactive molecules with a range of positive properties, including antioxidant, antimicrobial, or anti-inflammatory effects. As a result, plant extracts are often purified to recover phenolic compound-enriched fractions to be used to develop nutraceutical products or dietary supplements. In this article, we review the properties of some remarkable plant-based nutraceuticals in which the active molecules are mainly polyphenols and related compounds. Methods for the characterization of these extracts, the chemical determination of the bioactivities of key molecules, and the principal applications of the resulting products are discussed in detail.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liwei Chu ◽  
Xuejiao He ◽  
Wenbo Shu ◽  
Lijuan Wang ◽  
Fang Tang

Short tandem target mimic (STTM), which is composed of two short sequences mimicking small RNA target sites, separated by a linker of optimal size, can block the functions of all members in a miRNA family. microRNA393 (miR393), which is one of the conserved miRNA families in plants, can regulate plant root growth, leaf development, plant architecture, and stress resistance. In order to verify the role of miR393 in the secondary growth of trees, we created its STTM transgenic poplar lines (STTM393). The expression of miR393 in STTM393 lines was reduced by over 10 times compared with the control plants. STTM393 lines showed promoted growth with about 20% higher, 15% thicker, and 2–4 more internodes than the control plants after 3 months of growth. The cross-section of the stems showed that STTM393 lines had wider phloem, xylem, and more cambium cell layers than control plants, and the lignin content in STTM393 lines was also higher as revealed by staining and chemical determination. Based on the transcriptome analysis, the genes related to the auxin signaling pathway, cell cyclin, cell expansion, and lignin synthesis had higher expression in STTM393 lines than that in control plants. The higher expression levels of FBL family members suggested that the auxin signaling pathway was strengthened in STTM393 lines to promote plant growth. Therefore, the knockdown of miR393 using the STTM approach provides a way to improve poplar growth and biomass production.


Sign in / Sign up

Export Citation Format

Share Document