Supplement to 'Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer'

2002 ◽  
Vol 128 (581) ◽  
pp. 1029-1031 ◽  
Author(s):  
Tarmo Soomere ◽  
Sergej S. Zilitinkevich
2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Hannes Malcha ◽  
Hermann Nicolai

Abstract Supersymmetric Yang-Mills theories can be characterized by a non-local and non-linear transformation of the bosonic fields (Nicolai map) mapping the interacting functional measure to that of a free theory, such that the Jacobi determinant of the transformation equals the product of the fermionic determinants obtained by integrating out the gauginos and ghosts at least on the gauge hypersurface. While this transformation has been known so far only for the Landau gauge and to third order in the Yang-Mills coupling, we here extend the construction to a large class of (possibly non-linear and non-local) gauges, and exhibit the conditions for all statements to remain valid off the gauge hypersurface. Finally, we present explicit results to second order in the axial gauge and to fourth order in the Landau gauge.


1993 ◽  
Vol 254 ◽  
pp. 529-559 ◽  
Author(s):  
Pijush K. Kundu

Oceanic internal waves forced by a latitude-independent wind field travelling eastward at speed U is investigated, extending the hydrostatic f-plane model of Kundu & Thomson (1985). The ocean has a well-mixed surface layer overlying a stratified interior with a depth-dependent buoyancy frequency N(z), and f can vary with latitude. Solutions are found by decomposition into vertical normal modes. Problems discussed are (i) the response to a slowly moving line front, and (ii) the response in a variable f ocean.For the slowly moving line front assuming a depth-independent N, the trailing waves are found to have large frequencies, and the vertical acceleration ∂w/∂t is important (that is the dynamics are non-hydrostatic) if the frequency ω is larger than a few times (Nf)½. The wake contains waves associated with all vertical modes, in contrast to hydrostatic dynamics in which slowly moving line fronts do not generate trailing waves of low-order modes. It is argued that slowly moving wind fields can provide an explanation for the frequently observed broad peak in the spectrum of vertical motion at a frequency somewhat smaller than N, and of the vertical coherence of the associated waves in the upper ocean.To study lower-frequency internal waves, the hydrostatic constant-f model of Kundu & Thomson is extended to variable f. Various sections through such a flow clearly illustrate the development of a meridional wavelength λy = 2π/βt as predicted by D'Asaro (1989), in addition to the zonal wavelength λx due to translation of the wind. The two effects combine to cause a greater horizontal inhomogeneity, so that energy from the surface layer descends quickly, travelling equatorward and downward. Since waves at any point arrive from different latitudes, spectra no longer consist of discrete peaks but are more continuous and broader than those in the constant-f model. The waves are more intermittent because of the larger spectral width, and vertically less correlated in the thermocline because of a larger bandwidth of vertical modes. The vertical correlation in the deep ocean, however, is still high because the response is dominated by one or two low-order modes after 30 days of integration. As U decreases, the larger bandwidth of frequency increases the intermittency, and the larger bandwidth of vertical wavenumber decreases the vertical correlation. A superposition of travelling wind events intensifies the high-frequency end of the spectrum; a month-long travelling series of realistic strength can generate waves with amplitudes of order 4 cm/s in the deep ocean.It is suggested that propagating winds and linear dynamics are responsible for the generation of a large fraction of internal waves in the ocean at all depths. The main effect of nonlinearity and mean flow may be to shape the internal wave spectra to a ω-2 form.


1987 ◽  
Vol 178 ◽  
pp. 279-302 ◽  
Author(s):  
S. A. Thorpe ◽  
S. A. Thorpe ◽  
A. P. Haines

The reflection of a train of two-dimensional finite-amplitude internal waves propagating at an angle β to the horizontal in an inviscid fluid of constant buoyancy frequency and incident on a uniform slope of inclination α is examined, specifically when β > α. Expressions for the stream function and density perturbation are derived to third order by a standard iterative process. Exact solutions of the equations of motion are chosen for the incident and reflected first-order waves. Whilst these individually generate no harmonics, their interaction does force additional components. In addition to the singularity at α = β when the reflected wave propagates in a direction parallel to the slope, singularities occur for values of α and β at which the incident-wave and reflected-wave components are in resonance; strong nonlinearity is found at adjacent values of α and β. When the waves are travelling in a vertical plane normal to the slope, resonance is possible at second order only for α < 8.4° and β < 30°. At third order the incident wave is itself modified by interaction with reflected components. Third-order resonances are only possible for α < 11.8° and, at a given α, the width of the β-domain in which nonlinearities connected to these resonances is important is much less than at second order. The effect of nonlinearity is to reduce the steepness of the incident wave at which the vertical density gradient in the wave field first becomes zero, and to promote local regions of low static stability remote from the slope. The importance of nonlinearity in the boundary reflection of oceanic internal waves is discussed.In an Appendix some results of an experimental study of internal waves are described. The boundary layer on the slope is found to have a three-dimensional structure.


Sign in / Sign up

Export Citation Format

Share Document