On internal waves generated by travelling wind

1993 ◽  
Vol 254 ◽  
pp. 529-559 ◽  
Author(s):  
Pijush K. Kundu

Oceanic internal waves forced by a latitude-independent wind field travelling eastward at speed U is investigated, extending the hydrostatic f-plane model of Kundu & Thomson (1985). The ocean has a well-mixed surface layer overlying a stratified interior with a depth-dependent buoyancy frequency N(z), and f can vary with latitude. Solutions are found by decomposition into vertical normal modes. Problems discussed are (i) the response to a slowly moving line front, and (ii) the response in a variable f ocean.For the slowly moving line front assuming a depth-independent N, the trailing waves are found to have large frequencies, and the vertical acceleration ∂w/∂t is important (that is the dynamics are non-hydrostatic) if the frequency ω is larger than a few times (Nf)½. The wake contains waves associated with all vertical modes, in contrast to hydrostatic dynamics in which slowly moving line fronts do not generate trailing waves of low-order modes. It is argued that slowly moving wind fields can provide an explanation for the frequently observed broad peak in the spectrum of vertical motion at a frequency somewhat smaller than N, and of the vertical coherence of the associated waves in the upper ocean.To study lower-frequency internal waves, the hydrostatic constant-f model of Kundu & Thomson is extended to variable f. Various sections through such a flow clearly illustrate the development of a meridional wavelength λy = 2π/βt as predicted by D'Asaro (1989), in addition to the zonal wavelength λx due to translation of the wind. The two effects combine to cause a greater horizontal inhomogeneity, so that energy from the surface layer descends quickly, travelling equatorward and downward. Since waves at any point arrive from different latitudes, spectra no longer consist of discrete peaks but are more continuous and broader than those in the constant-f model. The waves are more intermittent because of the larger spectral width, and vertically less correlated in the thermocline because of a larger bandwidth of vertical modes. The vertical correlation in the deep ocean, however, is still high because the response is dominated by one or two low-order modes after 30 days of integration. As U decreases, the larger bandwidth of frequency increases the intermittency, and the larger bandwidth of vertical wavenumber decreases the vertical correlation. A superposition of travelling wind events intensifies the high-frequency end of the spectrum; a month-long travelling series of realistic strength can generate waves with amplitudes of order 4 cm/s in the deep ocean.It is suggested that propagating winds and linear dynamics are responsible for the generation of a large fraction of internal waves in the ocean at all depths. The main effect of nonlinearity and mean flow may be to shape the internal wave spectra to a ω-2 form.

2010 ◽  
Vol 664 ◽  
pp. 478-509 ◽  
Author(s):  
VICTOR I. SHRIRA ◽  
WILLIAM A. TOWNSEND

The paper is concerned with analytical study of inertia-gravity waves in rotating density-stratified ideal fluid confined in a spherical shell. It primarily aims at clarifying the possible role of these motions in deep ocean mixing. Recently, it was found that on the ‘non-traditional’ β-plane inertia-gravity internal waves can propagate polewards beyond their inertial latitude, where the wave frequency equals the local Coriolis parameter, by turning into subinertial modes trapped in the narrowing waveguides around the local minima of buoyancy frequency N. The behaviour of characteristics was established: wave horizontal and vertical scales decrease as the wave advances polewards and tend to zero at a latitude corresponding to an attractor of characteristics. However, the basic questions about wave evolution, its quantitative description and the possibility of its reflection from the critical latitude remain open. The present work addresses these issues by studying the linear inviscid evolution of finite bandwidth wavepackets on the ‘non-traditional’ β-plane past the inertial latitude for generic oceanic stratification. Beyond the inertial latitude, the wave field is confined in narrowing waveguides of three distinct generic types around different local minima of the buoyancy frequency. In the oceanic context, the widest is adjacent to the flat bottom, the thinnest is the upper mixed layer, and the middle one is located between the seasonal and main thermocline. We find explicit asymptotic solutions describing the wave field in the WKB approximation. As a byproduct, the conservation of wave action principle is explicitly formulated for all types of internal waves on the ‘non-traditional’ β-plane. The wave velocities and vertical shear tend to infinity and become singular at the attractor latitude or its vicinity for both monochromatic and finite bandwidth packets. We call this phenomenon singular focusing. These WKB solutions are shown to remain valid up to singularity for the bottom and mid-ocean waveguides. The main conclusion is that even in the inviscid setting the wave evolution towards smaller and smaller horizontal and vertical scales is irreversible: there is no reflection. For situations typical of deep ocean, a simultaneous increase in wave amplitude and decrease of vertical scale causes a sharp increase of vertical shear, which may lead to wave breaking and increased mixing.


2012 ◽  
Vol 706 ◽  
pp. 571-583 ◽  
Author(s):  
M. S. Paoletti ◽  
Harry L. Swinney

AbstractWe present experimental and computational studies of the propagation of internal waves in a stratified fluid with an exponential density profile that models the deep ocean. The buoyancy frequency profile $N(z)$ (proportional to the square root of the density gradient) varies smoothly by more than an order of magnitude over the fluid depth, as is common in the deep ocean. The non-uniform stratification is characterized by a turning depth ${z}_{c} $, where $N({z}_{c} )$ is equal to the wave frequency $\omega $ and $N(z\lt {z}_{c} )\lt \omega $. Internal waves reflect from the turning depth and become evanescent below the turning depth. The energy flux below the turning depth is shown to decay exponentially with a decay constant given by ${k}_{c} $, which is the horizontal wavenumber at the turning depth. The viscous decay of the vertical velocity amplitude of the incoming and reflected waves above the turning depth agree within a few per cent with a previously untested theory for a fluid of arbitrary stratification (Kistovich and Chashechkin, J. Appl. Mech. Tech. Phys., vol. 39, 1998, pp. 729–737).


2017 ◽  
Vol 830 ◽  
pp. 660-680 ◽  
Author(s):  
T. Kataoka ◽  
S. J. Ghaemsaidi ◽  
N. Holzenberger ◽  
T. Peacock ◽  
T. R. Akylas

The generation of internal gravity waves by a vertically oscillating cylinder that is tilted to the horizontal in a stratified Boussinesq fluid of constant buoyancy frequency, $N$, is investigated. This variant of the widely studied horizontal configuration – where a cylinder aligned with a plane of constant gravitational potential induces four wave beams that emanate from the cylinder, forming a cross pattern known as the ‘St. Andrew’s Cross’ – brings out certain unique features of radiated internal waves from a line source tilted to the horizontal. Specifically, simple kinematic considerations reveal that for a cylinder inclined by a given angle $\unicode[STIX]{x1D719}$ to the horizontal, there is a cutoff frequency, $N\sin \unicode[STIX]{x1D719}$, below which there is no longer a radiated wave field. Furthermore, three-dimensional effects due to the finite length of the cylinder, which are minor in the horizontal configuration, become a significant factor and eventually dominate the wave field as the cutoff frequency is approached; these results are confirmed by supporting laboratory experiments. The kinematic analysis, moreover, suggests a resonance phenomenon near the cutoff frequency as the group-velocity component perpendicular to the cylinder direction vanishes at cutoff; as a result, energy cannot be easily radiated away from the source, and nonlinear and viscous effects are likely to come into play. This scenario is examined by adapting the model for three-dimensional wave beams developed in Kataoka & Akylas (J. Fluid Mech., vol. 769, 2015, pp. 621–634) to the near-resonant wave field due to a tilted line source of large but finite length. According to this model, the combination of three-dimensional, nonlinear and viscous effects near cutoff triggers transfer of energy, through the action of Reynolds stresses, to a circulating horizontal mean flow. Experimental evidence of such an induced mean flow near cutoff is also presented.


2001 ◽  
Vol 428 ◽  
pp. 349-386 ◽  
Author(s):  
E. J. STRANG ◽  
H. J. S. FERNANDO

The results of a laboratory experiment designed to study turbulent entrainment at sheared density interfaces are described. A stratified shear layer, across which a velocity difference ΔU and buoyancy difference Δb is imposed, separates a lighter upper turbulent layer of depth D from a quiescent, deep lower layer which is either homogeneous (two-layer case) or linearly stratified with a buoyancy frequency N (linearly stratified case). In the parameter ranges investigated the flow is mainly determined by two parameters: the bulk Richardson number RiB = ΔbD/ΔU2 and the frequency ratio fN = ND=ΔU.When RiB > 1.5, there is a growing significance of buoyancy effects upon the entrainment process; it is observed that interfacial instabilities locally mix heavy and light fluid layers, and thus facilitate the less energetic mixed-layer turbulent eddies in scouring the interface and lifting partially mixed fluid. The nature of the instability is dependent on RiB, or a related parameter, the local gradient Richardson number Rig = N2L/ (∂u/∂z)2, where NL is the local buoyancy frequency, u is the local streamwise velocity and z is the vertical coordinate. The transition from the Kelvin–Helmholtz (K-H) instability dominated regime to a second shear instability, namely growing Hölmböe waves, occurs through a transitional regime 3.2 < RiB < 5.8. The K-H activity completely subsided beyond RiB ∼ 5 or Rig ∼ 1. The transition period 3.2 < RiB < 5 was characterized by the presence of both K-H billows and wave-like features, interacting with each other while breaking and causing intense mixing. The flux Richardson number Rif or the mixing efficiency peaked during this transition period, with a maximum of Rif ∼ 0.4 at RiB ∼ 5 or Rig ∼ 1. The interface at 5 < RiB < 5.8 was dominated by ‘asymmetric’ interfacial waves, which gradually transitioned to (symmetric) Hölmböe waves at RiB > 5:8.Laser-induced fluorescence measurements of both the interfacial buoyancy flux and the entrainment rate showed a large disparity (as large as 50%) between the two-layer and the linearly stratified cases in the range 1.5 < RiB < 5. In particular, the buoyancy flux (and the entrainment rate) was higher when internal waves were not permitted to propagate into the deep layer, in which case more energy was available for interfacial mixing. When the lower layer was linearly stratified, the internal waves appeared to be excited by an ‘interfacial swelling’ phenomenon, characterized by the recurrence of groups or packets of K-H billows, their degeneration into turbulence and subsequent mixing, interfacial thickening and scouring of the thickened interface by turbulent eddies.Estimation of the turbulent kinetic energy (TKE) budget in the interfacial zone for the two-layer case based on the parameter α, where α = (−B + ε)/P, indicated an approximate balance (α ∼ 1) between the shear production P, buoyancy flux B and the dissipation rate ε, except in the range RiB < 5 where K-H driven mixing was active.


2013 ◽  
Vol 30 (8) ◽  
pp. 1803-1819 ◽  
Author(s):  
Luksa Luznik ◽  
Cody J. Brownell ◽  
Murray R. Snyder ◽  
Hyung Suk Kang

Abstract This paper describes a set of turbulence measurements at sea in the area of high flow distortion in the near-wake and recirculation zone behind a ship's superstructure that is similar in geometry to a helicopter hangar/flight deck arrangement found on many modern U.S. Navy ships. The instrumented ship is a 32-m-long training vessel operated by the United States Naval Academy that has been modified by adding a representative flight deck and hangar structure. The flight deck is instrumented with up to seven sonic anemometers/thermometers that are used to obtain simultaneous velocity measurements at various spatial locations on the flight deck, and one sonic anemometer at bow mast is used to characterize inflow atmospheric boundary conditions. Data characterizing wind over the deck at an incoming angle of 0° (head winds) and wind speeds from 2 to 10 m s−1 obtained in the Chesapeake Bay are presented and discussed. Turbulent statistics of inflow conditions are analyzed using the Kaimal universal turbulence spectral model for the atmospheric surface layer and show that for the present dataset this approach eliminates the need to account for platform motion in computing variances and covariances. Conditional sampling of mean flow and turbulence statistics at the flight deck indicate no statistically significant variations between unstable, stable, and neutral atmospheric inflow conditions, and the results agree with the published data for flows over the backward-facing step geometries.


2017 ◽  
Vol 829 ◽  
pp. 280-303 ◽  
Author(s):  
S. Haney ◽  
W. R. Young

Groups of surface gravity waves induce horizontally varying Stokes drift that drives convergence of water ahead of the group and divergence behind. The mass flux divergence associated with spatially variable Stokes drift pumps water downwards in front of the group and upwards in the rear. This ‘Stokes pumping’ creates a deep Eulerian return flow that sets the isopycnals below the wave group in motion and generates a trailing wake of internal gravity waves. We compute the energy flux from surface to internal waves by finding solutions of the wave-averaged Boussinesq equations in two and three dimensions forced by Stokes pumping at the surface. The two-dimensional (2-D) case is distinct from the 3-D case in that the stratification must be very strong, or the surface waves very slow for any internal wave (IW) radiation at all. On the other hand, in three dimensions, IW radiation always occurs, but with a larger energy flux as the stratification and surface wave (SW) amplitude increase or as the SW period is shorter. Specifically, the energy flux from SWs to IWs varies as the fourth power of the SW amplitude and of the buoyancy frequency, and is inversely proportional to the fifth power of the SW period. Using parameters typical of short period swell (e.g. 8 s SW period with 1 m amplitude) we find that the energy flux is small compared to both the total energy in a typical SW group and compared to the total IW energy. Therefore this coupling between SWs and IWs is not a significant sink of energy for the SWs nor a source for IWs. In an extreme case (e.g. 4 m amplitude 20 s period SWs) this coupling is a significant source of energy for IWs with frequency close to the buoyancy frequency.


1988 ◽  
Vol 46 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Pijush K. Kundu ◽  
Richard E. Thomson ◽  
Barbara M. Hickey ◽  
Paul H. LeBlond
Keyword(s):  

1993 ◽  
Vol 137 ◽  
pp. 278-280
Author(s):  
Josefina Montalbán

The generation of internal waves in the radiatively stable stellar region by the turbulent motion at the boundary of the overlaying convective zone is similar to the same case in the deep ocean or in the earth atmosphere (Townsend, 1965), and can be described in a simple way as following: When an turbulent fluid element arrives at the boundary of the convective region with a non-zero momentum, it beats and it deforms the interface between both regions. This disturbance of the equilibrium state excites a train of internal waves propagating below the convective zone in the horizontal and vertical directions for the frequencies lower than the characteristic one for the stable stratification (Brunt-Väisälä frequency).


2016 ◽  
Vol 46 (8) ◽  
pp. 2457-2481 ◽  
Author(s):  
Yusuke Kawaguchi ◽  
Shigeto Nishino ◽  
Jun Inoue ◽  
Katsuhisa Maeno ◽  
Hiroki Takeda ◽  
...  

AbstractThe Arctic Ocean is known to be quiescent in terms of turbulent kinetic energy (TKE) associated with internal waves. To investigate the current state of TKE in the seasonally ice-free Chukchi Plateau, Arctic Ocean, this study performed a 3-week, fixed-point observation (FPO) using repeated microstructure, hydrographic, and current measurements in September 2014. During the FPO program, the microstructure observation detected noticeable peaks of TKE dissipation rate ε during the transect of an anticyclonic eddy moving across the FPO station. Particularly, ε had a significant elevation in the lower halocline layer, near the critical level, reaching the order of 10−8 W kg−1. The ADCP-measured current displayed energetic near-inertial internal waves (NIWs) propagating via the stratification at the top and bottom of the anticyclone. According to spectral analyses of horizontal velocity, the waves had almost downward energy propagation, and its current amplitude reached ~10 cm s−1. The WKB scaling, incorporating vertical variations of relative vorticity, suggests that increased wave energy near the two pycnoclines was associated with diminishing group velocity at the corresponding depths. The finescale parameterization using observed near-inertial velocity and buoyancy frequency successfully reproduced the characteristics of observed ε, supporting that the near-inertial kinetic energy can be effectively dissipated into turbulence near the critical layer. According to a mixed layer slab model, a rapidly moving storm that has passed over in the first week likely delivered the bulk of NIW kinetic energy, eventually captured by the vortex, into the surface water.


2010 ◽  
Vol 40 (11) ◽  
pp. 2401-2417 ◽  
Author(s):  
Pascale Bouruet-Aubertot ◽  
Hans van Haren ◽  
M. Pascale Lelong

Abstract Deep-ocean high-resolution moored temperature data are analyzed with a focus on superbuoyant frequencies. A local Taylor hypothesis based on the horizontal velocity averaged over 2 h is used to infer horizontal wavenumber spectra of temperature variance. The inertial subrange extends over fairly low horizontal wavenumbers, typically within 2 × 10−3 and 2 × 10−1 cycles per minute (cpm). It is therefore interpreted as a stratified inertial subrange for most of this wavenumber interval, whereas in some cases the convective inertial subrange is resolved as well. Kinetic energy dissipation rate ε is inferred using theoretical expressions for the stratified inertial subrange. A wide range of values within 10−9 and 4 × 10−7 m2 s−3 is obtained for time periods either dominated by semidiurnal tides or by significant subinertial variability. A scaling for ε that depends on the potential energy within the inertio-gravity waves (IGW) frequency band PEIGW and the buoyancy frequency N is proposed for these two cases. When semidiurnal tides dominate, ε ≃ (PEIGWN)3/2, whereas ε ≃ PEIGWN in the presence of significant subinertial variability. This result is obtained for energy levels ranging from 1 to 30 times the Garrett–Munk energy level and is in contrast with classical finescale parameterization in which ε ∼ (PEIGW)2 that applies far from energy sources. The specificities of the stratified bottom boundary layer, namely a weak stratification, may account for this difference.


Sign in / Sign up

Export Citation Format

Share Document