Agradient velocity, vortical motion and gravity waves in a rotating shallow-water model

2004 ◽  
Vol 130 (601) ◽  
pp. 1977-1989 ◽  
Author(s):  
Georgi G. Sutyrin
2012 ◽  
Vol 706 ◽  
pp. 71-107 ◽  
Author(s):  
Noé Lahaye ◽  
Vladimir Zeitlin

AbstractWe study formation and properties of new coherent structures: ageostrophic modons in the two-layer rotating shallow water model. The ageostrophic modons are obtained by ‘ageostrophic adjustment’ of the exact modon solutions of the two-layer quasi-geostrophic equations with the free surface, which are used to initialize the full two-layer shallow water model. Numerical simulations are performed using a well-balanced high-resolution finite volume numerical scheme. For large enough Rossby numbers, the initial configurations undergo ageostrophic adjustment towards asymmetric ageostrophic quasi-stationary coherent dipoles. This process is accompanied by substantial emission of inertia–gravity waves. The resulting dipole is shown to be robust and survives frontal collisions. It contains captured inertia–gravity waves and, for higher Rossby numbers and weak stratification, carries a (baroclinic) hydraulic jump at its axis. For stronger stratifications and high enough Rossby numbers, ‘rider’ coherent structures appear as a result of adjustment, with a monopole in one layer and a dipole in another. Other ageostrophic coherent structures, such as two-layer tripoles and two-layer modons with nonlinear scatter plot, result from the collisions of ageostrophic modons. They are shown to be long-living and robust, and to capture waves.


2013 ◽  
Vol 716 ◽  
pp. 528-565 ◽  
Author(s):  
Bruno Ribstein ◽  
Vladimir Zeitlin

AbstractWe undertake a detailed analysis of linear stability of geostrophically balanced double density fronts in the framework of the two-layer rotating shallow-water model on the $f$-plane with topography, the latter being represented by an escarpment beneath the fronts. We use the pseudospectral collocation method to identify and quantify different kinds of instabilities resulting from phase locking and resonances of frontal, Rossby, Poincaré and topographic waves. A swap in the leading long-wave instability from the classical barotropic form, resulting from the resonance of two frontal waves, to a baroclinic form, resulting from the resonance of Rossby and frontal waves, takes place with decreasing depth of the lower layer. Nonlinear development and saturation of these instabilities, and of an instability of topographic origin, resulting from the resonance of frontal and topographic waves, are studied and compared with the help of a new-generation well-balanced finite-volume code for multilayer rotating shallow-water equations. The results of the saturation for different instabilities are shown to produce very different secondary coherent structures. The influence of the topography on these processes is highlighted.


2018 ◽  
Author(s):  
LMD

We show how the two-layer moist-convective rotating shallow water model (mcRSW), which proved to be a simple and robust tool for studying effects of moist convection on large-scale atmospheric motions, can be improved by including, in addition to the water vapour, precipitable water, and the effects of vaporisation, entrainment, and precipitation. Thus improved mcRSW becomes cloud-resolving. It is applied, as an illustration, to model the development of instabilities of tropical cyclone-like vortices.


Author(s):  
Da Yang

AbstractRandomly distributed convective storms can self-aggregate in the absence of large-scale forcings. Here we present a 1D shallow water model to study the convective self-aggregation. This model simulates the dynamics of the planetary boundary layer and represents convection as a triggered process. Once triggered, convection lasts for finite time and occupies finite length. We show that the model can successfully simulate self-aggregation, and that the results are robust to a wide range of parameter values. In the simulations, convection excites gravity waves. The gravity waves then form a standing wave pattern, separating the domain into convectively active and inactive regions. We analyze the available potential energy (APE) budget and show that convection generates APE, providing energy for self-aggregation. By performing dimensional analysis, we develop a scaling theory for the size of convective aggregation, which is set by the gravity wave speed, damping timescale, and number density of convective storms. This paper provides a simple modeling framework to further study convective self-aggregation.


Author(s):  
Vladimir Zeitlin

The derivation of rotating shallow-water equations by vertical averaging and columnar motion hypothesis is repeated without supposing horizontal homogeneity of density/potential temperature. The so-called thermal rotating shallow-water model arises as the result. The model turns to be equivalent to gas dynamics with a specific equation of state. It is shown that it possesses Hamiltonian structure and can be derived from a variational principle. Its solution at low Rossby numbers should obey the thermo-geostrophic equilibrium, replacing the standard geostrophic equilibrium. The wave spectrum of the model is analysed, and the appearance of a whole new class of vortex instabilities of convective type, resembling asymmetric centrifugal instability and leading to a strong mixing at nonlinear stage, is demonstrated.


Author(s):  
Vladimir Zeitlin

In this chapter, one- and two-layer versions of the rotating shallow-water model on the tangent plane to the rotating, and on the whole rotating sphere, are derived from primitive equations by vertical averaging and columnar motion (mean-field) hypothesis. Main properties of the models including conservation laws and wave-vortex dichotomy are established. Potential vorticity conservation is derived, and the properties of inertia–gravity waves are exhibited. The model is then reformulated in Lagrangian coordinates, variational principles for its one- and two-layer version are established, and conservation laws are reinterpreted in these terms.


Sign in / Sign up

Export Citation Format

Share Document