Evaluation of microvascular invasion of hepatocellular carcinoma using whole-lesion histogram analysis with the stretched-exponential diffusion model

Author(s):  
Hongxiang Li ◽  
LiLi Wang ◽  
Jing Zhang ◽  
Qing Duan ◽  
Yikai Xu ◽  
...  

Objectives: To evaluate the potential role of histogram analysis of stretched exponential model (SEM) through whole-tumor volume for preoperative prediction of microvascular invasion (MVI) in single hepatocellular carcinoma (HCC). Methods: This study included 43 patients with pathologically proven HCCs by surgery who underwent multiple b-values diffusion-weighted imaging (DWI) and contrast-enhanced MRI.The histogram metrics of distributed diffusion coefficient (DDC) and heterogeneity index (α) from SEM were compared between HCCs with and without MVI, by using the independent t-test. Morphologic features of conventional MRI and clinical data were evaluated with chi-squared or Fisher’s exact tests. Receiver operating characteristic (ROC) and multivariable logistic regression analyses were performed to evaluate the diagnostic performance of different parameters for predicting MVI. Results: The tumor size and non-smooth tumor margin were significantly associated with MVI (all p < 0.05). The mean, fifth, 25th, 50th percentiles of DDC, and the fifth percentile of ADC between HCCs with and without MVI were statistically significant differences (all p < 0.05). The histogram parameters of α showed no statistically significant differences (all p > 0.05). At multivariate analysis,the fifth percentile of DDC was independent risk factor for MVI of HCC(p = 0.006). Conclusions: Histogram parameters DDC and ADC, but not the α value, are useful predictors of MVI. The fifth percentile of DDC was the most useful value to predict MVI of HCC. Advances in knowledge: There is limited literature addressing the role of SEM for evaluating MVI of HCC. Our findings suggest that histogram analysis of SEM based on whole-tumor volume can be useful for MVI prediction.

2021 ◽  
Author(s):  
Bao-Ye sun ◽  
Pei-Yi Gu ◽  
Ruo-Yu Guan ◽  
Cheng Zhou ◽  
Jian-Wei Lu ◽  
...  

Abstract Background & Aims: Preoperative prediction of microvascular invasion (MVI) is critical for treatment strategy making in patients with hepatocellular carcinoma (HCC). We aimed to develop a deep learning (DL) model based on preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict the MVI status and clinical outcomes in patients with HCC. Methods We retrospectively included a total of 321 HCC patients with pathologically confirmed MVI status. Preoperative DCE-MRI of these patients were collected, annotated and further analyzed by DL in this study. A predictive model for MVI integrating DL-predicted MVI status (DL-MVI) and clinical parameters was constructed with multivariate logistic regression. Results Of 321 HCC patients, 136 patients were pathologically MVI absent and 185 patients were MVI present. Recurrence-free survival (RFS) and overall survival (OS) were significantly different between the DL-predicted MVI-absent and MVI-present. Among all clinical variables, only DL-predicted MVI status and AFP were independently associated with MVI: DL-MVI (odds ratio [OR]=35.738; 95% confidence interval [CI]: 14.027-91.056; p<0.001), AFP (OR=4.634, 95% CI: 2.576-8.336; p<0.001). To predict the presence of MVI, DL-MVI combined with AFP achieved an area under the curve (AUC) of 0.824. Conclusions Our predictive model combining DL-MVI and AFP achieved good performance for predicting MVI and clinical outcomes in patients with HCC.


Author(s):  
Yi Dong ◽  
Dan Zuo ◽  
Yi-Jie Qiu ◽  
Jia-Ying Cao ◽  
Han-Zhang Wang ◽  
...  

OBJECTIVES: To establish and evaluate a machine learning radiomics model based on grayscale and Sonazoid contrast enhanced ultrasound images for the preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) patients. METHODS: 100 cases of histopathological confirmed HCC lesions were prospectively included. Regions of interest were segmented on both grayscale and Kupffer phase of Sonazoid contrast enhanced (CEUS) images. Radiomic features were extracted from tumor region and region containing 5 mm of peritumoral liver tissues. Maximum relevance minimum redundancy (MRMR) and Least Absolute Shrinkage and Selection Operator (LASSO) were used for feature selection and Support Vector Machine (SVM) classifier was trained for radiomic signature calculation. Radiomic signatures were incorporated with clinical variables using univariate-multivariate logistic regression for the final prediction of MVI. Receiver operating characteristic curves, calibration curves and decision curve analysis were used to evaluate model’s predictive performance of MVI. RESULTS: Age were the only clinical variable significantly associated with MVI. Radiomic signature derived from Kupffer phase images of peritumoral liver tissues (kupfferPT) displayed a significantly better performance with an area under the receiver operating characteristic curve (AUROC) of 0.800 (95% confidence interval: 0.667, 0.834), the final prediction model using Age and kupfferPT achieved an AUROC of 0.804 (95% CI: 0.723, 0.878), accuracy of 75.0%, sensitivity of 87.5% and specificity of 69.1%. CONCLUSIONS: Radiomic model based on Kupffer phase ultrasound images of tissue adjacent to HCC lesions showed an observable better predictive value compared to grayscale images and has potential value to facilitate preoperative identification of HCC patients at higher risk of MVI.


2021 ◽  
Vol 11 ◽  
Author(s):  
Di Zhang ◽  
Qi Wei ◽  
Ge-Ge Wu ◽  
Xian-Ya Zhang ◽  
Wen-Wu Lu ◽  
...  

PurposeThis study aimed to develop a radiomics nomogram based on contrast-enhanced ultrasound (CEUS) for preoperatively assessing microvascular invasion (MVI) in hepatocellular carcinoma (HCC) patients.MethodsA retrospective dataset of 313 HCC patients who underwent CEUS between September 20, 2016 and March 20, 2020 was enrolled in our study. The study population was randomly grouped as a primary dataset of 192 patients and a validation dataset of 121 patients. Radiomics features were extracted from the B-mode (BM), artery phase (AP), portal venous phase (PVP), and delay phase (DP) images of preoperatively acquired CEUS of each patient. After feature selection, the BM, AP, PVP, and DP radiomics scores (Rad-score) were constructed from the primary dataset. The four radiomics scores and clinical factors were used for multivariate logistic regression analysis, and a radiomics nomogram was then developed. We also built a preoperative clinical prediction model for comparison. The performance of the radiomics nomogram was evaluated via calibration, discrimination, and clinical usefulness.ResultsMultivariate analysis indicated that the PVP and DP Rad-score, tumor size, and AFP (alpha-fetoprotein) level were independent risk predictors associated with MVI. The radiomics nomogram incorporating these four predictors revealed a superior discrimination to the clinical model (based on tumor size and AFP level) in the primary dataset (AUC: 0.849 vs. 0.690; p &lt; 0.001) and validation dataset (AUC: 0.788 vs. 0.661; p = 0.008), with a good calibration. Decision curve analysis also confirmed that the radiomics nomogram was clinically useful. Furthermore, the significant improvement of net reclassification index (NRI) and integrated discriminatory improvement (IDI) implied that the PVP and DP radiomics signatures may be very useful biomarkers for MVI prediction in HCC.ConclusionThe CEUS-based radiomics nomogram showed a favorable predictive value for the preoperative identification of MVI in HCC patients and could guide a more appropriate surgical planning.


Author(s):  
Yi Dong ◽  
Yijie Qiu ◽  
Daohui Yang ◽  
Lingyun Yu ◽  
Dan Zuo ◽  
...  

OBJECTIVE: To investigate the clinical value of dynamic contrast enhanced ultrasound (D-CEUS) in predicting the microvascular invasion (MVI) of hepatocellular carcinoma (HCC). PATIENTS AND METHODS: In this retrospective study, 16 patients with surgery and histopathologically proved HCC lesions were included. Patients were classified according to the presence of MVI: MVI positive group (n = 6) and MVI negative group (n = 10). Contrast enhanced ultrasound (CEUS) examinations were performed within a week before surgery. Dynamic analysis was performed by VueBox ® software (Bracco, Italy). Three regions of interests (ROIs) were set in the center of HCC lesions, at the margin of HCC lesions and in the surrounding liver parenchyma accordingly. Time intensity curves (TICs) were generated and quantitative perfusion parameters including WiR (wash-in rate), WoR (wash-out rate), WiAUC (wash-in area under the curve), WoAUC (wash-out area under the curve) and WiPi (wash-in perfusion index) were obtained and analyzed. RESULTS: All of HCC lesions showed arterial hyperenhancement (100 %) and at the late phase as hypoenhancement (75 %) in CEUS. Among all CEUS quantitative parameters, the WiAUC and WoAUC were higher in MVI positive group than in MVI negative group in the center HCC lesions (P <  0.05), WiAUC, WoAUC and WiPI were higher in MVI positive group than in MVI negative group at the margin of HCC lesions. WiR and WoR were significant higher in MVI positive group. CONCLUSIONS: D-CEUS with quantitative perfusion analysis has potential clinical value in predicting the existence of MVI in HCC lesions.


2016 ◽  
Vol 41 (10) ◽  
pp. 1973-1979 ◽  
Author(s):  
Zhu Wang ◽  
Wei Wang ◽  
Guang-Jian Liu ◽  
Zheng Yang ◽  
Li-Da Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document