Deep-Learning Based Analysis of Preoperative MRI Predicts Microvascular Invasion and Outcome in Hepatocellular Carcinoma

Author(s):  
Bao-Ye sun ◽  
Pei-Yi Gu ◽  
Ruo-Yu Guan ◽  
Cheng Zhou ◽  
Jian-Wei Lu ◽  
...  

Abstract Background & Aims: Preoperative prediction of microvascular invasion (MVI) is critical for treatment strategy making in patients with hepatocellular carcinoma (HCC). We aimed to develop a deep learning (DL) model based on preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict the MVI status and clinical outcomes in patients with HCC. Methods We retrospectively included a total of 321 HCC patients with pathologically confirmed MVI status. Preoperative DCE-MRI of these patients were collected, annotated and further analyzed by DL in this study. A predictive model for MVI integrating DL-predicted MVI status (DL-MVI) and clinical parameters was constructed with multivariate logistic regression. Results Of 321 HCC patients, 136 patients were pathologically MVI absent and 185 patients were MVI present. Recurrence-free survival (RFS) and overall survival (OS) were significantly different between the DL-predicted MVI-absent and MVI-present. Among all clinical variables, only DL-predicted MVI status and AFP were independently associated with MVI: DL-MVI (odds ratio [OR]=35.738; 95% confidence interval [CI]: 14.027-91.056; p<0.001), AFP (OR=4.634, 95% CI: 2.576-8.336; p<0.001). To predict the presence of MVI, DL-MVI combined with AFP achieved an area under the curve (AUC) of 0.824. Conclusions Our predictive model combining DL-MVI and AFP achieved good performance for predicting MVI and clinical outcomes in patients with HCC.

2021 ◽  
Author(s):  
Danjun Song ◽  
Yueyue Wang ◽  
Wentao Wang ◽  
Yining Wang ◽  
Jiabin Cai ◽  
...  

Abstract Purpose Microvascular invasion (MVI) is a critical determinant of the early recurrence and poor prognosis of patients with hepatocellular carcinoma (HCC). Prediction of MVI status is clinically significant for the decision of treatment strategies and the assessment of patient’s prognosis. A deep learning (DL) model was developed to predict the MVI status and grade in HCC patients based on preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and clinical parameters.Methods HCC patients with pathologically confirmed MVI status from January to December 2016 were enrolled and preoperative DCE-MRI of these patients were collected in this study. Then they were randomly divided into the training and testing cohorts. A DL model with eight conventional neural network (CNN) branches for eight MRI sequences was built to predict the presence of MVI, and further combined with clinical parameters for better prediction.Results Among 601 HCC patients, 376 patients were pathologically MVI-absent, and 225 patients were MVI-present. To predict the presence of MVI, the DL model based only on images achieved an area under curve (AUC) of 0.915 in the testing cohort as compared to the radiomics model with an AUC of 0.731. The DL combined with clinical parameters (DLC) model yielded the best predictive performance with an AUC of 0.931. For the MVI grade stratification, the DLC models achieved an overall accuracy of 0.793. Survival analysis demonstrated that the patients with DLC-predicted MVI status were associated with the poor overall survival (OS) and recurrence-free survival (RFS). Further investigation showed that hepatectomy with the wide resection margin contributes to better OS and RFS in the DLC-predicted MVI-present patients.Conclusion The proposed DLC model can provide a non-invasive approach to evaluate MVI before surgery, which can help surgeons make decisions of surgical strategies and assess patient’s prognosis.


Author(s):  
Yi Dong ◽  
Yijie Qiu ◽  
Daohui Yang ◽  
Lingyun Yu ◽  
Dan Zuo ◽  
...  

OBJECTIVE: To investigate the clinical value of dynamic contrast enhanced ultrasound (D-CEUS) in predicting the microvascular invasion (MVI) of hepatocellular carcinoma (HCC). PATIENTS AND METHODS: In this retrospective study, 16 patients with surgery and histopathologically proved HCC lesions were included. Patients were classified according to the presence of MVI: MVI positive group (n = 6) and MVI negative group (n = 10). Contrast enhanced ultrasound (CEUS) examinations were performed within a week before surgery. Dynamic analysis was performed by VueBox ® software (Bracco, Italy). Three regions of interests (ROIs) were set in the center of HCC lesions, at the margin of HCC lesions and in the surrounding liver parenchyma accordingly. Time intensity curves (TICs) were generated and quantitative perfusion parameters including WiR (wash-in rate), WoR (wash-out rate), WiAUC (wash-in area under the curve), WoAUC (wash-out area under the curve) and WiPi (wash-in perfusion index) were obtained and analyzed. RESULTS: All of HCC lesions showed arterial hyperenhancement (100 %) and at the late phase as hypoenhancement (75 %) in CEUS. Among all CEUS quantitative parameters, the WiAUC and WoAUC were higher in MVI positive group than in MVI negative group in the center HCC lesions (P <  0.05), WiAUC, WoAUC and WiPI were higher in MVI positive group than in MVI negative group at the margin of HCC lesions. WiR and WoR were significant higher in MVI positive group. CONCLUSIONS: D-CEUS with quantitative perfusion analysis has potential clinical value in predicting the existence of MVI in HCC lesions.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 4079-4079
Author(s):  
Hidetoshi Nitta ◽  
Marc Antoine Allard ◽  
Mylene Sebagh ◽  
Gabriella Pittau ◽  
Oriana Ciacio ◽  
...  

4079 Background: Microvascular invasion (MVI) is the strongest prognostic factor following surgery of hepatocellular carcinoma (HCC). However, it is usually not available on the preoperative setting. A predictive model of MVI in patients scheduled for hepatic resection (HR) or liver transplantation (LT) would thus help guiding treatment strategy. The aim of this study was to develop a predictive model for MVI of HCC before either HR or LT. Methods: HCC patients who consecutively performed HR or LT from January 1994 to June 2016 at a single institution were subdivided into a training and validation cohort. Risk factors for MVI in the training cohort were used to develop a predictive model for MVI, to be validated in the validation cohort. The outcomes of the HR and LT patients with high or low MVI probability based on the model, were compared using propensity score matching (PSM). Cut-off values for continuous factors were determined based on ROC curve analysis. Results: A total of 910 patients (425 HR, 485 LT) were included in the training (n = 637) and validation (n = 273) cohorts. In the training cohort, multivariate analysis demonstrated that alpha-fetoprotein ≥100ng/ml ( p < 0.0001), largest tumor size ≥40mm ( p = 0.0002), non-boundary HCC type on contrast-enhanced CT ( p = 0.001), neutrophils-to-lymphocytes ratio ≥3.2 ( p = 0.002), aspartate aminotransferase ≥62U/l ( p = 0.02) were independently associated with MVI. Combinations of these 5 factors varied the MVI probability from 15.5% to 91.1%. This predictive model achieved a good c-index of 0.76 in the validation cohort. In PSM (109 HR, 109 LT), there was no difference in survival between HR and LT patients among the high MVI probability (≥50%) patients, (5y-OS; 46.3% vs 42.2%, p = 0.77, 5y-RFS; 54.0% vs 28.8%, p = 0.21). Among the low probability ( < 50%), survival was significantly decreased following HR compared with LT (5y-OS; 54.1% vs 78.8%, p = 0.007, 5y-RFS; 17.3% vs 86.1%, p< 0.0001). Conclusions: This model developed from preoperative data allows reliable prediction of MVI, and may thus help with preoperative decisions about the suitability of HR or LT in patients with HCC.


Author(s):  
Yi Dong ◽  
Dan Zuo ◽  
Yi-Jie Qiu ◽  
Jia-Ying Cao ◽  
Han-Zhang Wang ◽  
...  

OBJECTIVES: To establish and evaluate a machine learning radiomics model based on grayscale and Sonazoid contrast enhanced ultrasound images for the preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) patients. METHODS: 100 cases of histopathological confirmed HCC lesions were prospectively included. Regions of interest were segmented on both grayscale and Kupffer phase of Sonazoid contrast enhanced (CEUS) images. Radiomic features were extracted from tumor region and region containing 5 mm of peritumoral liver tissues. Maximum relevance minimum redundancy (MRMR) and Least Absolute Shrinkage and Selection Operator (LASSO) were used for feature selection and Support Vector Machine (SVM) classifier was trained for radiomic signature calculation. Radiomic signatures were incorporated with clinical variables using univariate-multivariate logistic regression for the final prediction of MVI. Receiver operating characteristic curves, calibration curves and decision curve analysis were used to evaluate model’s predictive performance of MVI. RESULTS: Age were the only clinical variable significantly associated with MVI. Radiomic signature derived from Kupffer phase images of peritumoral liver tissues (kupfferPT) displayed a significantly better performance with an area under the receiver operating characteristic curve (AUROC) of 0.800 (95% confidence interval: 0.667, 0.834), the final prediction model using Age and kupfferPT achieved an AUROC of 0.804 (95% CI: 0.723, 0.878), accuracy of 75.0%, sensitivity of 87.5% and specificity of 69.1%. CONCLUSIONS: Radiomic model based on Kupffer phase ultrasound images of tissue adjacent to HCC lesions showed an observable better predictive value compared to grayscale images and has potential value to facilitate preoperative identification of HCC patients at higher risk of MVI.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Shuai Zhang ◽  
Guizhi Xu ◽  
Chongfeng Duan ◽  
Xiaoming Zhou ◽  
Xin Wang ◽  
...  

Purpose. To investigate whether the radiomics analysis of MR imaging in the hepatobiliary phase (HBP) can be used to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC). Method. A total of 130 patients with HCC, including 80 MVI-positive patients and 50 MVI-negative patients, who underwent MR imaging with Gd-EOB-DTPA were enrolled. Least absolute shrinkage and selection operator (LASSO) regression was applied to select radiomics parameters derived from MR images obtained in the HBP 5 min, 10 min, and 15 min images. The selected features at each phase were adopted into support vector machine (SVM) classifiers to establish models. Multiple comparisons of the AUCs at each phase were performed by the Delong test. The decision curve analysis (DCA) was used to analyze the classification of MVI-positive and MVI-negative patients. Results. The most predictive features between MVI-positive and MVI-negative patients included 9, 8, and 14 radiomics parameters on HBP 5 min, 10 min, and 15 min images, respectively. A model incorporating the selected features produced an AUC of 0.685, 0.718, and 0.795 on HBP 5 min, 10 min, and 15 min images, respectively. The predictive model for HBP 5 min, 10 min and 15 min showed no significant difference by the Delong test. DCA indicated that the predictive model for HBP 15 min outperformed the models for HBP 5 min and 10 min. Conclusions. Radiomics parameters in the HBP can be used to predict MVI, with the HBP 15 min model having the best differential diagnosis ability.


2021 ◽  
Vol 11 ◽  
Author(s):  
Di Zhang ◽  
Qi Wei ◽  
Ge-Ge Wu ◽  
Xian-Ya Zhang ◽  
Wen-Wu Lu ◽  
...  

PurposeThis study aimed to develop a radiomics nomogram based on contrast-enhanced ultrasound (CEUS) for preoperatively assessing microvascular invasion (MVI) in hepatocellular carcinoma (HCC) patients.MethodsA retrospective dataset of 313 HCC patients who underwent CEUS between September 20, 2016 and March 20, 2020 was enrolled in our study. The study population was randomly grouped as a primary dataset of 192 patients and a validation dataset of 121 patients. Radiomics features were extracted from the B-mode (BM), artery phase (AP), portal venous phase (PVP), and delay phase (DP) images of preoperatively acquired CEUS of each patient. After feature selection, the BM, AP, PVP, and DP radiomics scores (Rad-score) were constructed from the primary dataset. The four radiomics scores and clinical factors were used for multivariate logistic regression analysis, and a radiomics nomogram was then developed. We also built a preoperative clinical prediction model for comparison. The performance of the radiomics nomogram was evaluated via calibration, discrimination, and clinical usefulness.ResultsMultivariate analysis indicated that the PVP and DP Rad-score, tumor size, and AFP (alpha-fetoprotein) level were independent risk predictors associated with MVI. The radiomics nomogram incorporating these four predictors revealed a superior discrimination to the clinical model (based on tumor size and AFP level) in the primary dataset (AUC: 0.849 vs. 0.690; p &lt; 0.001) and validation dataset (AUC: 0.788 vs. 0.661; p = 0.008), with a good calibration. Decision curve analysis also confirmed that the radiomics nomogram was clinically useful. Furthermore, the significant improvement of net reclassification index (NRI) and integrated discriminatory improvement (IDI) implied that the PVP and DP radiomics signatures may be very useful biomarkers for MVI prediction in HCC.ConclusionThe CEUS-based radiomics nomogram showed a favorable predictive value for the preoperative identification of MVI in HCC patients and could guide a more appropriate surgical planning.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hang Zhou ◽  
Jiawei Sun ◽  
Tao Jiang ◽  
Jiaqi Wu ◽  
Qunying Li ◽  
...  

PurposesTo establish a predictive model incorporating clinical features and contrast enhanced ultrasound liver imaging and reporting and data system (CEUS LI-RADS) for estimation of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) patients.MethodsIn the retrospective study, 127 HCC patients from two hospitals were allocated as training cohort (n=98) and test cohorts (n=29) based on cutoff time-point, June 2020. Multivariate regression analysis was performed to identify independent indicators for developing predictive nomogram models. The area under receiver operating characteristic (AUC) curve was also determined to establish the diagnostic performance of different predictive models. Corresponding sensitivities and specificities of different models at the cutoff nomogram value were compared.ResultsIn the training cohort, clinical information (larger tumor size, higher AFP level) and CEUS LR-M were significantly correlated with the presence of MVI (all p&lt;0.05). By incorporating clinical information and CEUS LR-M, the predictive model (LR-M+Clin) achieved a desirable diagnostic performance (AUC=0.80 and 0.84) in both cohorts at nomogram cutoff score value of 89. The sensitivity of LR-M+Clin when predicting MVI in HCC patients was higher than that of the clinical model alone (86.7% vs. 46.7%, p=0.027), while specificities were 78.6% and 85.7% (p=0.06), respectively, in the test cohort. In addition, LR-M+Clin exhibited similar AUC and specificity, but a significantly higher sensitivity (86.7%) than those of LR-M alone and LR-5(No)+Clin (both sensitivities=73.3%, both p=0.048).ConclusionThe predictive model incorporating CEUS LR-M and clinical features was able to predict the MVI status of HCC and is a potential reliable preoperative tool for informing treatment.


Author(s):  
Hongxiang Li ◽  
LiLi Wang ◽  
Jing Zhang ◽  
Qing Duan ◽  
Yikai Xu ◽  
...  

Objectives: To evaluate the potential role of histogram analysis of stretched exponential model (SEM) through whole-tumor volume for preoperative prediction of microvascular invasion (MVI) in single hepatocellular carcinoma (HCC). Methods: This study included 43 patients with pathologically proven HCCs by surgery who underwent multiple b-values diffusion-weighted imaging (DWI) and contrast-enhanced MRI.The histogram metrics of distributed diffusion coefficient (DDC) and heterogeneity index (α) from SEM were compared between HCCs with and without MVI, by using the independent t-test. Morphologic features of conventional MRI and clinical data were evaluated with chi-squared or Fisher’s exact tests. Receiver operating characteristic (ROC) and multivariable logistic regression analyses were performed to evaluate the diagnostic performance of different parameters for predicting MVI. Results: The tumor size and non-smooth tumor margin were significantly associated with MVI (all p < 0.05). The mean, fifth, 25th, 50th percentiles of DDC, and the fifth percentile of ADC between HCCs with and without MVI were statistically significant differences (all p < 0.05). The histogram parameters of α showed no statistically significant differences (all p > 0.05). At multivariate analysis,the fifth percentile of DDC was independent risk factor for MVI of HCC(p = 0.006). Conclusions: Histogram parameters DDC and ADC, but not the α value, are useful predictors of MVI. The fifth percentile of DDC was the most useful value to predict MVI of HCC. Advances in knowledge: There is limited literature addressing the role of SEM for evaluating MVI of HCC. Our findings suggest that histogram analysis of SEM based on whole-tumor volume can be useful for MVI prediction.


Sign in / Sign up

Export Citation Format

Share Document