scholarly journals What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?

RNA ◽  
2021 ◽  
pp. rna.079026.121
Author(s):  
Julie D Forman-Kay ◽  
Jonathon A Ditlev ◽  
Michael L Nosella ◽  
Hyun O Lee

Exciting recent work has highlighted that numerous cellular compartments lack encapsulating lipid bilayers (often called “membraneless organelles”), and that their structure and function are central to the regulation of key biological processes, including transcription, RNA splicing, translation and more. These structures have been described as “biomolecular condensates” to underscore that biomolecules can be significantly concentrated in them. Many condensates, including RNA granules and processing bodies, are enriched in proteins and nucleic acids. Biomolecular condensates exhibit a range of material states from liquid- to gel-like, with the physical process of liquid-liquid phase separation implicated in driving or contributing to their formation. To date, in vitro studies of phase separation have provided mechanistic insights into the formation and function of condensates. However, the link between the often micron-sized in vitro condensates with nanometer-sized cellular correlates has not been well established. Consequently, questions have arisen as to whether cellular structures below the optical resolution limit can be considered biomolecular condensates. Similarly, the distinction between condensates and discrete dynamic hub complexes is debated. Here we discuss the key features that define biomolecular condensates to help understand behaviors of structures containing and generating RNA.

Author(s):  
Jonathon A Ditlev

Abstract Liquid‒liquid phase separation (LLPS) of biomolecules has emerged as an important mechanism that contributes to cellular organization. Phase separated biomolecular condensates, or membrane-less organelles, are compartments composed of specific biomolecules without a surrounding membrane in the nucleus and cytoplasm. LLPS also occurs at membranes, where both lipids and membrane-associated proteins can de-mix to form phase separated compartments. Investigation of these membrane-associated condensates using in vitro biochemical reconstitution and cell biology has provided key insights into the role of phase separation in membrane domain formation and function. However, these studies have generally been limited by available technology to study LLPS on model membranes and the complex cellular environment that regulates condensate formation, composition, and function. Here, I briefly review our current understanding of membrane-associated condensates, establish why LLPS can be advantageous for certain membrane-associated condensates, and offer a perspective for how these condensates may be studied in the future.


2017 ◽  
Vol 114 (28) ◽  
pp. E5530-E5538 ◽  
Author(s):  
Monica C. Pillon ◽  
Mack Sobhany ◽  
Mario J. Borgnia ◽  
Jason G. Williams ◽  
Robin E. Stanley

Las1 is a recently discovered endoribonuclease that collaborates with Grc3–Rat1–Rai1 to process precursor ribosomal RNA (rRNA), yet its mechanism of action remains unknown. Disruption of the mammalian Las1 gene has been linked to congenital lethal motor neuron disease and X-linked intellectual disability disorders, thus highlighting the necessity to understand Las1 regulation and function. Here, we report that the essential Las1 endoribonuclease requires its binding partner, the polynucleotide kinase Grc3, for specific C2 cleavage. Our results establish that Grc3 drives Las1 endoribonuclease cleavage to its targeted C2 site both in vitro and in Saccharomyces cerevisiae. Moreover, we observed Las1-dependent activation of the Grc3 kinase activity exclusively toward single-stranded RNA. Together, Las1 and Grc3 assemble into a tetrameric complex that is required for competent rRNA processing. The tetrameric Grc3/Las1 cross talk draws unexpected parallels to endoribonucleases RNaseL and Ire1, and establishes Grc3/Las1 as a unique member of the RNaseL/Ire1 RNA splicing family. Together, our work provides mechanistic insight for the regulation of the Las1 endoribonuclease and identifies the tetrameric Grc3/Las1 complex as a unique example of a protein-guided programmable endoribonuclease.


2020 ◽  
Vol 4 (3) ◽  
pp. 355-364
Author(s):  
M. Sankaranarayanan ◽  
Timothy T. Weil

Drosophila eggs are highly polarised cells that use RNA–protein complexes to regulate storage and translational control of maternal RNAs. Ribonucleoprotein granules are a class of biological condensates that form predominantly by intracellular phase separation. Despite extensive in vitro studies testing the physical principles regulating condensates, how phase separation translates to biological function remains largely unanswered. In this perspective, we discuss granules in Drosophila oogenesis as a model system for investigating the physiological role of phase separation. We review key maternal granules and their properties while highlighting ribonucleoprotein phase separation behaviours observed during development. Finally, we discuss how concepts and models from liquid–liquid phase separation could be used to test mechanisms underlying granule assembly, regulation and function in Drosophila oogenesis.


2018 ◽  
Author(s):  
Ruchika Sachdev ◽  
Maria Hondele ◽  
Miriam Linsenmeier ◽  
Pascal Vallotton ◽  
Christopher F. Mugler ◽  
...  

AbstractProcessing bodies (PBs) are cytoplasmic mRNP granules that assemble via liquid-liquid phase separation and are implicated in the decay or storage of mRNAs. How PB assembly is regulated in cells remains unclear. We recently identified the ATPase activity of the DEAD-box protein Dhh1 as a key regulator of PB dynamics and demonstrated that Not1, an activator of the Dhh1 ATPase and member of the CCR4-NOT deadenylase complex inhibits PB assembly in vivo [Mugler et al., 2016]. Here, we show that the PB component Pat1 antagonizes Not1 and promotes PB assembly via its direct interaction with Dhh1. Intriguingly, in vivo PB dynamics can be recapitulated in vitro, since Pat1 enhances the phase separation of Dhh1 and RNA into liquid droplets, whereas Not1 reverses Pat1-Dhh1-RNA condensation. Overall, our results uncover a function of Pat1 in promoting the multimerization of Dhh1 on mRNA, thereby aiding the assembly of large multivalent mRNP granules that are PBs.


2020 ◽  
Vol 117 (11) ◽  
pp. 5883-5894 ◽  
Author(s):  
Alexander E. Conicella ◽  
Gregory L. Dignon ◽  
Gül H. Zerze ◽  
Hermann Broder Schmidt ◽  
Alexandra M. D’Ordine ◽  
...  

Liquid–liquid phase separation (LLPS) is involved in the formation of membraneless organelles (MLOs) associated with RNA processing. The RNA-binding protein TDP-43 is present in several MLOs, undergoes LLPS, and has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS). While some ALS-associated mutations in TDP-43 disrupt self-interaction and function, here we show that designed single mutations can enhance TDP-43 assembly and function via modulating helical structure. Using molecular simulation and NMR spectroscopy, we observe large structural changes upon dimerization of TDP-43. Two conserved glycine residues (G335 and G338) are potent inhibitors of helical extension and helix–helix interaction, which are removed in part by variants at these positions, including the ALS-associated G335D. Substitution to helix-enhancing alanine at either of these positions dramatically enhances phase separation in vitro and decreases fluidity of phase-separated TDP-43 reporter compartments in cells. Furthermore, G335A increases TDP-43 splicing function in a minigene assay. Therefore, the TDP-43 helical region serves as a short but uniquely tunable module where application of biophysical principles can precisely control assembly and function in cellular and synthetic biology applications of LLPS.


1999 ◽  
Vol 112 (24) ◽  
pp. 4773-4783 ◽  
Author(s):  
M. Trischler ◽  
W. Stoorvogel ◽  
O. Ullrich

Rab GTPases are associated with distinct cellular compartments and function as specific regulators of intracellular transport. In the endocytic pathway, it is well documented that Rab5 regulates transport from plasma membrane to early (sorting) endosomes. In contrast, little is known about the precise localization and function of Rab4 and Rab11, which are believed to control endocytic recycling. In the present study we have analysed the protein composition of Rab5- and Rab11-carrying endosomes to gain further insight into the compartmental organization of the endocytic and recycling pathway. Endosome populations of this transport route were purified by immunoadsorption from endosome-enriched subcellular fractions using antibodies directed against the cytoplasmic tail of the transferrin receptor, Rab5 or Rab11. Endocytosed transferrin moved sequentially through compartments that could be immunoadsorbed with anti-Rab5 and anti-Rab11, consistent with the theory that Rab5 and Rab11 localise to sorting and recycling endosomes, respectively. These compartments exhibited morphological differences, as determined by electron microscopy. Although their overall protein compositions were very similar, some proteins were found to be selectively enriched. While Rab4 was present on all endosome populations, Rab5 and Rab11 were strikingly segregated. Furthermore, the Rab11-positive endosomes were rich in annexin II, actin and the t-SNARE syntaxin 13, compared to Rab5-containing endosomes. In an in vitro assay, the Rab5 effector protein EEA1 was preferentially recruited by Rab5-positive endosomes. Taken together, our data suggest an organization of the transferrin pathway into distinct Rab5- and Rab11-positive compartments.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ruchika Sachdev ◽  
Maria Hondele ◽  
Miriam Linsenmeier ◽  
Pascal Vallotton ◽  
Christopher F Mugler ◽  
...  

Processing bodies (PBs) are cytoplasmic mRNP granules that assemble via liquid–liquid phase separation and are implicated in the decay or storage of mRNAs. How PB assembly is regulated in cells remains unclear. Previously, we identified the ATPase activity of the DEAD-box protein Dhh1 as a key regulator of PB dynamics and demonstrated that Not1, an activator of the Dhh1 ATPase and member of the CCR4-NOT deadenylase complex inhibits PB assembly in vivo (Mugler et al., 2016). Here, we show that the PB component Pat1 antagonizes Not1 and promotes PB assembly via its direct interaction with Dhh1. Intriguingly, in vivo PB dynamics can be recapitulated in vitro, since Pat1 enhances the phase separation of Dhh1 and RNA into liquid droplets, whereas Not1 reverses Pat1-Dhh1-RNA condensation. Overall, our results uncover a function of Pat1 in promoting the multimerization of Dhh1 on mRNA, thereby aiding the assembly of large multivalent mRNP granules that are PBs.


2020 ◽  
Vol 6 (14) ◽  
pp. eaaz7095 ◽  
Author(s):  
Serafima Guseva ◽  
Sigrid Milles ◽  
Malene Ringkjøbing Jensen ◽  
Nicola Salvi ◽  
Jean-Philippe Kleman ◽  
...  

Many viruses are known to form cellular compartments, also called viral factories. Paramyxoviruses, including measles virus, colocalize their proteomic and genomic material in puncta in infected cells. We demonstrate that purified nucleoproteins (N) and phosphoproteins (P) of measles virus form liquid-like membraneless organelles upon mixing in vitro. We identify weak interactions involving intrinsically disordered domains of N and P that are implicated in this process, one of which is essential for phase separation. Fluorescence allows us to follow the modulation of the dynamics of N and P upon droplet formation, while NMR is used to investigate the thermodynamics of this process. RNA colocalizes to droplets, where it triggers assembly of N protomers into nucleocapsid-like particles that encapsidate the RNA. The rate of encapsidation within droplets is enhanced compared to the dilute phase, revealing one of the roles of liquid-liquid phase separation in measles virus replication.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Jarrett Smith ◽  
Deepika Calidas ◽  
Helen Schmidt ◽  
Tu Lu ◽  
Dominique Rasoloson ◽  
...  

RNA granules are non-membrane bound cellular compartments that contain RNA and RNA binding proteins. The molecular mechanisms that regulate the spatial distribution of RNA granules in cells are poorly understood. During polarization of the C. elegans zygote, germline RNA granules, called P granules, assemble preferentially in the posterior cytoplasm. We present evidence that P granule asymmetry depends on RNA-induced phase separation of the granule scaffold MEG-3. MEG-3 is an intrinsically disordered protein that binds and phase separates with RNA in vitro. In vivo, MEG-3 forms a posterior-rich concentration gradient that is anti-correlated with a gradient in the RNA-binding protein MEX-5. MEX-5 is necessary and sufficient to suppress MEG-3 granule formation in vivo, and suppresses RNA-induced MEG-3 phase separation in vitro. Our findings suggest that MEX-5 interferes with MEG-3’s access to RNA, thus locally suppressing MEG-3 phase separation to drive P granule asymmetry. Regulated access to RNA, combined with RNA-induced phase separation of key scaffolding proteins, may be a general mechanism for controlling the formation of RNA granules in space and time.


2009 ◽  
Vol 20 (23) ◽  
pp. 4951-4961 ◽  
Author(s):  
Adam Swetloff ◽  
Beatrice Conne ◽  
Joachim Huarte ◽  
Jean-Luc Pitetti ◽  
Serge Nef ◽  
...  

Processing bodies (P-bodies) are cytoplasmic granules involved in the storage and degradation of mRNAs. In somatic cells, their formation involves miRNA-mediated mRNA silencing. Many P-body protein components are also found in germ cell granules, such as in mammalian spermatocytes. In fully grown mammalian oocytes, where changes in gene expression depend entirely on translational control, RNA granules have not as yet been characterized. Here we show the presence of P-body-like foci in mouse oocytes, as revealed by the presence of Dcp1a and the colocalization of RNA-associated protein 55 (RAP55) and the DEAD box RNA helicase Rck/p54, two proteins associated with P-bodies and translational control. These P-body-like structures have been called Dcp1-bodies and in meiotically arrested primary oocytes, two types can be distinguished based on their size. They also have different protein partners and sensitivities to the depletion of endogenous siRNA/miRNA and translational inhibitors. However, both type progressively disappear during in vitro meiotic maturation and are virtually absent in metaphase II–arrested secondary oocytes. Moreover, this disassembly of hDcp1a-bodies is concomitant with the posttranslational modification of EGFP-hDcp1a.


Sign in / Sign up

Export Citation Format

Share Document