scholarly journals The Use of Embryonic Stem Cell Derived Bioactive Material as a New Protein Supplement for the In Vitro Culture of Bovine Embryos

2011 ◽  
Vol 57 (3) ◽  
pp. 346-354 ◽  
Author(s):  
Eun Young KIM ◽  
Jun Beom LEE ◽  
Hyo Young PARK ◽  
Chang Jin JEONG ◽  
Key Zung RIU ◽  
...  
2006 ◽  
Vol 14 (2) ◽  
pp. 131-137 ◽  
Author(s):  
Gunilla Caisander ◽  
Hannah Park ◽  
Katarina Frej ◽  
Jenny Lindqvist ◽  
Christina Bergh ◽  
...  

2013 ◽  
Vol 113 (1) ◽  
pp. 145-153 ◽  
Author(s):  
Arun Kumar De ◽  
Shweta Garg ◽  
Dinesh Kumar Singhal ◽  
Hrudananda Malik ◽  
Ayan Mukherjee ◽  
...  

Amino Acids ◽  
2013 ◽  
Vol 45 (6) ◽  
pp. 1343-1351 ◽  
Author(s):  
Miho Tamai ◽  
Mami Aoki ◽  
Akihito Nishimura ◽  
Koji Morishita ◽  
Yoh-ichi Tagawa

2011 ◽  
Vol 155 (1) ◽  
pp. 214-219 ◽  
Author(s):  
Qingjun Liu ◽  
Hui Yu ◽  
Zhou Tan ◽  
Hua Cai ◽  
Weiwei Ye ◽  
...  

2009 ◽  
Vol 380 (2) ◽  
pp. 230-235 ◽  
Author(s):  
Balusamy Jagatha ◽  
Mundackal S. Divya ◽  
Rajendran Sanalkumar ◽  
Chandrasekharan L. Indulekha ◽  
Sasidharan Vidyanand ◽  
...  

2005 ◽  
Vol 92 (5) ◽  
pp. 1265-1276 ◽  
Author(s):  
Chang-Hwan Park ◽  
Yang-Ki Minn ◽  
Ji-Yeon Lee ◽  
Dong Ho Choi ◽  
Mi-Yoon Chang ◽  
...  

2003 ◽  
Vol 285 (6) ◽  
pp. H2355-H2363 ◽  
Author(s):  
Mirit Snir ◽  
Izhak Kehat ◽  
Amira Gepstein ◽  
Raymond Coleman ◽  
Joseph Itskovitz-Eldor ◽  
...  

Assessment of early ultrastructural development and cell-cycle regulation in human cardiac tissue is significantly hampered by the lack of a suitable in vitro model. Here we describe the possible utilization of human embryonic stem cell (ES) lines for investigation of these processes. With the use of the embryoid body (EB) differentiation system, human ES cell-derived cardiomyocytes at different developmental stages were isolated and their histomorphometric, ultrastructural, and proliferative properties were characterized. Histomorphometric analysis revealed an increase in cell length, area, and length-to-width ratio in late-stage EBs (>35 days) compared with early (10–21 days) and intermediate (21–35 days) stages. This was coupled with a progressive ultrastructural development from an irregular myofibrillar distribution to an organized sarcomeric pattern. Cardiomyocyte proliferation, assessed by double labeling with cardiac-specific antibodies and either [3H]thymidine incorporation or Ki-67 immunolabeling, demonstrated a gradual withdrawal from cell cycle. Hence, the percentage of positively stained nuclei in early-stage cardiomyocytes ([3H]thymidine: 60 ± 10%, Ki-67: 54 ± 23%) decreased to 36 ± 7% and 9 ± 16% in intermediate-stage EBs and to <1% in late-stage cardiomyocytes. In conclusion, a reproducible temporal pattern of early cardiomyocyte proliferation, cell-cycle withdrawal, and ultrastructural maturation was noted in this model. Establishment of this unique in vitro surrogate system may allow to examine the molecular mechanisms underlying these processes and to assess interventions aiming to modify these properties. Moreover, the detailed characterization of the ES cell-derived cardiomyocyte may be crucial for the development of future cell replacement strategies aiming to regenerate functional myocardium.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Andrea C. Romero ◽  
Eugenio Vilanova ◽  
Miguel A. Sogorb

The embryonic Stem cell Test (EST) is a validated assay for testing embryotoxicityin vitro. The total duration of this protocol is 10 days, and its main end-point is based on histological determinations. It is suggested that improvements on EST must be focused toward molecular end-points and, if possible, to reduce the total assay duration. Five days of exposure of D3 cells in monolayers under spontaneous differentiation to 50 ng/mL of the strong embryotoxic 5-fluorouracil or to 75 μg/mL of the weak embryotoxic 5,5-diphenylhydeantoin caused between 20 and 74% of reductions in the expression of the following genes:Pnpla6,Afp,Hdac7,Vegfa, andNes. The exposure to 1 mg/mL of nonembryotoxic saccharin only caused statistically significant reductions in the expression ofNes. These exposures reduced cell viability of D3 cells by 15, 28, and 34%. We applied these records to the mathematical discriminating function of the EST method to find that this approach is able to correctly predict the embryotoxicity of all three above-mentioned chemicals. Therefore, this work proposes the possibility of improve EST by reducing its total duration and by introducing gene expression as biomarker of differentiation, which might be very interesting forin vitrorisk assessment embryotoxicity.


Sign in / Sign up

Export Citation Format

Share Document