scholarly journals Z(5): Critical Point Symmetry for the Prolate to Oblate Nuclear Shape Phase Transition

2020 ◽  
Vol 13 ◽  
pp. 73
Author(s):  
Dennis Bonatsos ◽  
D. Lenis ◽  
D. Petrellis ◽  
P. A. Terziev

A critical point symmetry for the prolate to oblate shape phase transition is intro­ duced, starting from the Bohr Hamiltonian and approximately separating variables for γ=30°. Parameter-free (up to overall scale factors) predictions for spectra and B(E2) transition rates are found to be in good agreement with experimental data for 194Pt, which is supposed to be located very close to the prolate to oblate critical point, as well as for its neighbours (192Pt, 196Pt).

2020 ◽  
Vol 15 ◽  
pp. 157
Author(s):  
D. Bonatsos ◽  
D. Lenis ◽  
D. Petrellis ◽  
P. A. Terziev ◽  
I. Yiyitoglou

A γ-rigid version (with γ = 0) of the X(5) critical point symmetry is constructed. The model, to be called X(3) since it is proved to contain three degrees of freedom, utilizes an infinite well potential, is based on exact separation of variables, and leads to parameter free (up to overall scale factors) predictions for spectra and B(E2) transition rates, which are in good agreement with existing experimental data for 172Os and 186Pt. An unexpected similarity of the β1-bands of the X(5) nuclei 150Nd, 152Sm, 154Gd, and 156Dy to the X(3) predictions is observed.


2004 ◽  
Vol 588 (3-4) ◽  
pp. 172-179 ◽  
Author(s):  
Dennis Bonatsos ◽  
D. Lenis ◽  
D. Petrellis ◽  
P.A. Terziev

2019 ◽  
Vol 14 ◽  
pp. 71
Author(s):  
Dennis Bonatsos ◽  
D. Lenis ◽  
D. Petrellis ◽  
P. Terziev ◽  
I. Yigitoglu

A γ-rigid solution of the Bohr Hamiltonian for 7 = 30° is derived, its ground state band being related to the second order Casimir operator of the Euclidean algebra E(4). Parameter-free (up to overall scale factors) predictions for spectra and B(E2) transition rates are in close agreement to the E (5) critical point symmetry, as well as to experimental data in the Xe region around A = 130.


2014 ◽  
Vol 23 (10) ◽  
pp. 1450056 ◽  
Author(s):  
H. Sabri

In this paper, by using the SO(6) representation of eigenstates and transitional Interacting Boson Model (IBM) Hamiltonian, the evolution from prolate to oblate shapes along the chain of Hg isotopes is studied. Parameter-free (up to overall scale factors) predictions for spectra and B(E2) transition rates are found to be in good agreement with experimental data for 200–204 Hg isotopes which are supported to be located in this transitional region.


2015 ◽  
Vol 751 ◽  
pp. 423-429 ◽  
Author(s):  
Yu Zhang ◽  
Feng Pan ◽  
Yan-An Luo ◽  
J.P. Draayer

2020 ◽  
Vol 13 ◽  
pp. 10
Author(s):  
Dennis Bonatsos ◽  
D. Lenis ◽  
N. Minkov ◽  
D. Petrellis ◽  
P. P. Raychev ◽  
...  

Davidson potentials of the form β^2 + β0^4/β^2, when used in the original Bohr Hamiltonian for γ-independent potentials bridge the U(5) and 0(6) symmetries. Using a variational procedure, we determine for each value of angular momentum L the value of β0 at which the derivative of the energy ratio RL = E(L)/E(2) with respect to β0 has a sharp maximum, the collection of RL values at these points forming a band which practically coincides with the ground state band of the E(5) model, corresponding to the critical point in the shape phase transition from U(5) to Ο(6). The same potentials, when used in the Bohr Hamiltonian after separating variables as in the X(5) model, bridge the U(5) and SU(3) symmetries, the same variational procedure leading to a band which practically coincides with the ground state band of the X(5) model, corresponding to the critical point of the U(5) to SU(3) shape phase transition. A new derivation of the Holmberg-Lipas formula for nuclear energy spectra is obtained as a by-product.


Author(s):  
Mostafa Oulne ◽  
Imad Tagdamte

Abstract The main aim of the present paper is to study extensively the γ-rigid Bohr Hamiltonian with anharmonic sextic oscillator potential for the variable β and γ = 0. For the corresponding spectral problem, a finite number of eigenvalues are found explicitly, by algebraic means, so-called Quasi-Exact Solvability (QES). The evolution of the spectral and electromagnetic properties by considering higher exact solvability orders is investigated, especially the approximate degeneracy of the ground and first two β bands in the critical point of the shape phase transition from a harmonic to an anharmonic prolate β-soft, also the shape evolution within an isotopic chain. Numerical results are given for 39 nuclei, namely, 98-108Ru, 100-102Mo, 116-130Xe, 180-196Pt, 172Os, 146-150Nd, 132-134Ce, 152-154Gd, 154-156Dy, 150-152Sm, 190Hg and 222Ra. Across this study, it seems that the higher quasi-exact solvability order improves our results by decreasing the rms, mostly for deformed nuclei. The nuclei 100,104Ru, 118,120,126,128Xe, 148Nd and 172Os fall exactly in the critical point.


Sign in / Sign up

Export Citation Format

Share Document