scholarly journals Uncertainties of particulate organic carbon concentrations in the mesopelagic zone of the Atlantic ocean

2021 ◽  
Vol 1 ◽  
pp. 43
Author(s):  
Paul Strubinger Sandoval ◽  
Giorgio Dall'Olmo ◽  
Keith Haines ◽  
Rafael Rasse ◽  
Jelizaveta Ross

Measurements of particulate organic carbon (POC) in the open ocean provide grounds for estimating oceanic carbon budgets and for modelling carbon cycling. The majority of the published POC measurements have been collected at the sea surface. Thus, POC stocks in the upper layer of the water column are relatively well constrained. However, our understanding of the POC distribution and its dynamics in deeper areas is modest due to insufficient in POC measurements. Moreover, the accuracy of published POC estimates is not always quantified, and neither is it fully understood. In this study, we determined the POC concentrations of samples collected in the upper 500 m during an Atlantic Meridional Transect and described a method for quantifying its experimental uncertainties using duplicate measurements. The analysis revealed that the medians of the total experimental uncertainties associated with our POC concentrations in the productive and mesopelagic zones were 2.5(±1.2) mg/m3 and 2.6(±0.6) mg/m3, respectively. In relative terms, these uncertainties corresponded to ~14% and ~ 35% of POC concentrations, respectively. However, despite our best efforts, we could explain only ~ 21% of the total experimental POC uncertainty. The potential sources of this unexplained portion of uncertainty are discussed.

2021 ◽  
Vol 1 ◽  
pp. 43
Author(s):  
Paul Strubinger Sandoval ◽  
Giorgio Dall'Olmo ◽  
Keith Haines ◽  
Rafael Rasse ◽  
Jelizaveta Ross

Measurements of particulate organic carbon (POC) in the open ocean provide grounds for estimating oceanic carbon budgets and for modelling carbon cycling. The majority of the published POC measurements have been collected at the sea surface. Thus, POC stocks in the upper layer of the water column are relatively well constrained. However, our understanding of the POC distribution and its dynamics in deeper areas is modest due to insufficient in POC measurements. Moreover, the accuracy of published POC estimates is not always quantified, and neither is it fully understood. In this study, we determined the POC concentrations of samples collected in the upper 500 m during an Atlantic Meridional Transect and described a method for quantifying its experimental uncertainties using duplicate measurements. The analysis revealed that the medians of the total experimental uncertainties associated with our POC concentrations in the productive and mesopelagic zones were 2.5(±1.2) mg/m3 and 2.6(±0.6) mg/m3, respectively. In relative terms, these uncertainties corresponded to ~14% and ~ 35% of POC concentrations, respectively. However, despite our best efforts, we could explain only ~ 21% of the total experimental POC uncertainty. The potential sources of this unexplained portion of uncertainty are discussed.


2019 ◽  
Author(s):  
Michael Stukel ◽  
Thomas Kelly

Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon:thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U-234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.


2021 ◽  
Author(s):  
Alexandra Gogou ◽  
Constantine Parinos ◽  
Spyros Stavrakakis ◽  
Emmanouil Proestakis ◽  
Maria Kanakidou ◽  
...  

<p>Biotic and abiotic processes that form, alter, transport, and remineralize particulate organic carbon, silicon, calcium carbonate, and other minor and trace chemical species in the water column are central to the ocean’s ecological and biogeochemical functioning and of fundamental importance to the ocean carbon cycle. Sinking particulate matter is the major vehicle for exporting carbon from the sea surface to the deep sea. During its transit towards the sea floor, most particulate organic carbon (POC) is returned to inorganic form and redistributed in the water column. This redistribution determines the surface concentration of dissolved CO<sub>2</sub>, and hence the rate at which the ocean can absorb CO<sub>2</sub> from the atmosphere. The ability to predict quantitatively the depth profile of remineralization is therefore critical to deciphering the response of the global carbon cycle to natural and human-induced changes.</p><p>Aiming to investigate the significant biogeochemical and ecological features and provide new insights on the sources and cycles of sinking particulate matter, a mooring line of five sediment traps was deployed from 2006 to 2015 (with some gap periods) at 5 successive water column depths (700, 1200, 2000, 3200 and 4300 m) in the SE Ionian Sea, northeastern Mediterranean (‘NESTOR’ site). We have examined the long-term records of downward fluxes for Corg, N<sub>tot</sub>, δ<sup>13</sup>Corg and δ<sup>15</sup>N<sub>tot</sub>, along with the associated ballast minerals (opal, lithogenics and CaCO<sub>3</sub>), lipid biomarkers, Chl-a and PP rates, phytoplankton composition, nutrient dynamics and atmospheric deposition.  </p><p>The satellite-derived seasonal and interannual variability of phytoplankton metrics (biomass and phenology) and atmospheric deposition (meteorology and air masses origin) was examined for the period of the sediment trap experiment. Regarding the atmospheric deposition, synergistic opportunities using Earth Observation satellite lidar and radiometer systems are proposed (e.g. Cloud‐Aerosol Lidar with Orthogonal Polarization - CALIOP, Moderate Resolution Imaging Spectroradiometer - MODIS), aiming towards a four‐dimensional exploitation of atmospheric aerosol loading (e.g. Dust Optical Depth) in the study area.</p><p>Our main goals are to: i) develop a comprehensive knowledge of carbon fluxes and associated mineral ballast fluxes from the epipelagic to the mesopelagic and bathypelagic layers, ii) elucidate the mechanisms governing marine productivity and carbon export and sequestration to depth and iii) shed light on the impact of atmospheric forcing and deposition in respect to regional and large scale circulation patterns and climate variability and the prevailing oceanographic processes (internal variability).</p><p>Acknowledgments</p><p>We acknowledge support of this work by the Action ‘National Network on Climate Change and its Impacts – <strong>CLIMPACT</strong>’, funded by the Public Investment Program of Greece (GSRT, Ministry of Development and Investments).</p>


2017 ◽  
Vol 31 (7) ◽  
pp. 1051-1065 ◽  
Author(s):  
Chelsey A. Baker ◽  
Stephanie A. Henson ◽  
Emma L. Cavan ◽  
Sarah L. C. Giering ◽  
Andrew Yool ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document