critical zone observatory
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 35)

H-INDEX

22
(FIVE YEARS 5)

2021 ◽  
Vol 3 ◽  
Author(s):  
Travis Nielson ◽  
John Bradford ◽  
W. Steven Holbrook ◽  
Mark Seyfried

In the northern hemisphere within snow-dominated mountainous watersheds north-facing slopes are commonly more deeply weathered than south-facing slopes. This has been attributed to a more persistent snowpack on the north facing aspects. A persistent snowpack releases its water into the subsurface in a single large pulse, which propagates the water deeper into the subsurface than the series of small pulses characteristic of the intermittent snowpack on south-facing slopes. Johnston Draw is an east-draining catchment in the Reynolds Creek Critical Zone Observatory, Idaho that spans a 300 m elevation gradient. The north-facing slope hosts a persistent snowpack that increases in volume up drainage, while the south-facing slope has intermittent snowpack throughout the drainage. We hypothesize that the largest difference in weathering depth between the two aspects will occur where the difference in snow accumulation between the aspects is also greatest. To test this hypothesis, we conducted four seismic refraction tomography surveys within Johnston Draw from inlet to outlet and perpendicular to drainage direction. From these measurements, we calculate the weathering zone thickness from the P-wave velocity profiles. We conclude that the maximum difference in weathering between aspects occurs ¾ of the way up the drainage from the outlet, where the difference in snow accumulation is highest. Above and below this point, the subsurface is more equally weathered and the snow accumulations are more similar. We also observed that the thickness of the weathering zone increased with decreasing elevation and interpret this to be related to the observed increase soil moisture at lower elevations. Our observations support the hypothesis that deeper snow accumulation leads to deeper weathering when all other variables are held equal. One caveat is the possibility that the denser vegetation contributes to deeper weathering on north-facing slopes via soil retention or higher rates of biological weathering.


2021 ◽  
Author(s):  
Coline Ariagno ◽  
Caroline Le Bouteiller ◽  
Peter van der Beek ◽  
Sébastien Klotz

Abstract. At the interface between the lithosphere and the atmosphere, the critical zone records the complex interactions between erosion, climate, geologic substrate and life, and can be directly monitored. Long data records collected in the sparsely vegetated, steep marly badland catchments of the Draix-Bléone Critical Zone Observatory (CZO), SE France, allow analysing potential climatic controls on long-term regolith dynamics and sediment export. Although widely accepted as a first-order control, rainfall variability does not fully explain the observed inter-annual variability in sediment export, suggesting that regolith production and its controls may modulate the observed pattern of sediment export. Here, we define sediment-export anomalies as the residuals from a predictive model with annual rainfall intensity above a threshold as the control. We then use continuous soil-temperature data, recorded at different locations over multiple years, to highlight the role of frost weathering in regolith production. Several proxies for different frost-weathering processes have been calculated from these data and compared to the sediment-export anomalies, with careful consideration of field data quality. Our results suggest that frost-cracking intensity (linked to ice segregation) can explain about half (47–64 %) of the sediment-export anomalies. In contrast, the number of freeze-thaw cycles (linked to volumetric expansion) has only a minor impact on catchment sediment response. The time spent below 0 °C also correlates well with the sediment-export anomalies and requires fewer field data to be calculated than the frost-cracking intensity. Thus, frost-weathering processes modulate sediment export by controlling regolith production in these catchments and should be taken into account when building a predictive model of sediment export from these badlands under a changing climate.


2021 ◽  
Author(s):  
Wenjuan Zheng ◽  
Anna Lamačová ◽  
Xuan Yu ◽  
Pavel Krám ◽  
Jakub Hruška ◽  
...  

2021 ◽  
Author(s):  
Vedran Krevh ◽  
Jasmina Defterdarović ◽  
Lana Filipović ◽  
Zoran Kovač ◽  
Steffen Beck-Broichsitter ◽  
...  

<p>SUPREHILL is a new (2020) and first Croatian critical zone observatory (CZO), focused on local scale agricultural e.g., vineyard hillslope processes. The experimental setup includes an extensive sensor-based network accompanied by weighing lysimeters and instruments for surface and subsurface hydrology measurement. The field measurements are supported by novel laboratory and numerical quantification methods for the determination of water flow and solute transport. This combined approach will allow the research team to accurately determine soil water balance components (soil water flow, preferential flow/transport pathways, surface runoff, evapotranspiration), the temporal origin of water in hillslope hydrology (isotopes), transport of agrochemicals, and to calibrate and validate numerical modeling procedures for describing and predicting soil water flow and solute transport. First results from sensors indicate increased soil moisture on the hilltop, which is supported by precipitation data from rain gauges and weighing lysimeters. The presence of a compacted soil horizon and compacted inter-row parts (due to trafficking) of the vineyard seems to be highly relevant in regulating water dynamics. Wick lysimeters confirm the sensor soil moisture data, while showing a significant difference in its repetitions which suggests a possibility of a preferential flow imposed by local scale soil heterogeneity. Measured values of surface and subsurface runoff suggest a crucial role of these processes in the hillslope hydrology, while slope and structure dynamics additionally influence soil hydraulic properties. We are confident that the CZO will give us new insights in the landscape heterogeneity and substantially increase our understanding regarding preferential flow and nonlinear solute transport, with results directly applicable in agricultural (sloped agricultural soil management) and environmental (soil and water) systems. Challenges remain in characterizing local scale soil heterogeneity, dynamic properties quantification and scaling issues for which we will rely on combining CZO focused measurements and numerical modeling after substantial data is collected.</p>


2021 ◽  
Author(s):  
Stéphane Audry ◽  
Henriette Ateba Bessa ◽  
Jean‐Pierre Bedimo Bedimo ◽  
Jean‐Loup Boeglin ◽  
Laurie Boithias ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document