Influence of foliar application of bio-stimulants on growth, yield and chemical composition of tomato

2019 ◽  
Vol 14 (01) ◽  
pp. 309-316 ◽  
2016 ◽  
Vol 10 (7) ◽  
pp. 59-69 ◽  
Author(s):  
Hussien Hanafy Ahmed Ahmed ◽  
Ramadan Aboul-Ella Nesiem Mohamed ◽  
Ali Allam Hesham ◽  
Fahmy El-Wakil Amira

Author(s):  
Mohamed A. Seif El-Yazal

This experiment was suggested to study the beneficial effects of foliar application with propolis extract at the rates 0, 6000, 7000, 8000 and 9000 mg/L solution used as foliar application to spinach seedlings on growth, yield and some chemical constituents of spinach plants (Spinacia oleracea L.) grown under calcareous saline soil conditions. All experiments were achieved during the two successive seasons of 2016 and 2017. Results showed that increasing the rates of propolis extract as foliar application increased the growth parameters of the treated plants. The best result was obtained by the rate (8000 mg/L) as a foliar application in both seasons of the study. The same trend was also observed regarding all studied chemical constituents, i.e. chlorophyll a, b and total carotenoids concentration, anthocyanine, total carbohydrates, total and reducing sugars, total free amino acid, free proline, crude protein, total indoles, total phenols, N, P and K in leaves. Thus, the coincident application of propolis extract at (8000 mg/L) as foliar application ingredient is recommended for improving growth, yield and chemical composition of spinach plants and for overcoming the adverse effect of saline conditions.


2008 ◽  
Vol 63 (4) ◽  
Author(s):  
Grzegorz Kulczycki ◽  
Rafał Januszkiewicz ◽  
Artur Jachymczak

Sugar Tech ◽  
2021 ◽  
Author(s):  
Arkadiusz Artyszak ◽  
Małgorzata Kondracka ◽  
Dariusz Gozdowski ◽  
Alicja Siuda ◽  
Magda Litwińczuk-Bis

AbstractThe effect of marine calcite, a mixture of ortho- and polysilicic acid as well as orthosilicic acid applied as a foliar spray on the chemical composition of sugar beet leaves in the critical phase of nutrient supply (beginning of July) but also leaves and roots during harvest time in 2015–2016, was studied. The content of silicon in the leaves ranged from 1.24 to 2.36 g kg−1 d.m. at the beginning of July, 3.85–5.34 g kg−1 d.m. during harvest and 2.91–4.20 g kg−1 d.m. in the roots. The foliar application of silicon caused a significant increase in the content of magnesium and calcium in leaves (in July) as compared to the control. The sugar beet consumes approx. 75 kg Si ha−1, which is almost 3.5 times more than P and 20% more than Mg thus proving its importance for its species. About 70% of the silicon taken up by sugar beet is stored in roots and 30% in leaves. The pure sugar yield is most favorably influenced by two- and threefold foliar application of the product containing silicon in the form of orthosilicic acid stabilized with choline, and a threefold mixture of ortho- and polysilicic acid. The increase in the pure sugar yield is not the result of a change in the chemical composition of sugar beet plants, but their more efficient functioning after foliar application of silicon under stress conditions caused by water shortage.


Sign in / Sign up

Export Citation Format

Share Document