scholarly journals When the annihilator graph of a commutative ring is planar or toroidal?

2020 ◽  
Vol 24 (2) ◽  
pp. 281-290
Author(s):  
Moharram Bakhtyiari ◽  
Reza Nikandish ◽  
Mohammad Javad Nikmehr

Let R be a commutative ring with identity, and let Z(R) be the set of zero-divisors of R. The annihilator graph of R is defined as the undirected graph AG(R) with the vertex set Z(R)* = Z(R) \ {0}, and two distinct vertices x and y are adjacent if and only if  ann_R(xy) \neq ann_R(x) \cup ann_R(y). In this paper, all rings whose annihilator graphs can be embedded on the plane or torus are classified.

Author(s):  
S. Karthik ◽  
S. N. Meera ◽  
K. Selvakumar

Let [Formula: see text] be a commutative ring with identity and [Formula: see text] be the set of all nonzero zero-divisors of [Formula: see text]. The annihilator graph of commutative ring [Formula: see text] is the simple undirected graph [Formula: see text] with vertices [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] is an essential ideal. In this paper, we classify all finite commutative rings with identity whose annihilator graph and essential graph have crosscap two.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050089
Author(s):  
V. Soleymanivarniab ◽  
A. Tehranian ◽  
R. Nikandish

Let [Formula: see text] be a commutative ring with nonzero identity. The annihilator graph of [Formula: see text], denoted by [Formula: see text], is the (undirected) graph whose vertex set is the set of all nonzero zero-divisors of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper, we study the metric dimension of annihilator graphs associated with commutative rings and some metric dimension formulae for annihilator graphs are given.


2016 ◽  
Vol 15 (07) ◽  
pp. 1650124 ◽  
Author(s):  
R. Nikandish ◽  
M. J. Nikmehr ◽  
M. Bakhtyiari

Let [Formula: see text] be a commutative ring with identity, and let [Formula: see text] be the set of zero-divisors of [Formula: see text]. The annihilator graph of [Formula: see text] is defined as the graph AG[Formula: see text] with the vertex set [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if ann[Formula: see text]. In this paper, we study annihilator graphs of rings with equal clique number and chromatic number. For some classes of rings, we give an explicit formula for the clique number of annihilator graphs. Among other results, bipartite annihilator graphs of rings are characterized. Furthermore, some results on annihilator graphs with finite clique number are given.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050060
Author(s):  
Sh. Ebrahimi ◽  
A. Tehranian ◽  
R. Nikandish

Let [Formula: see text] be a commutative ring with identity, and let [Formula: see text] be the set of zero-divisors of [Formula: see text]. The annihilator graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. In this paper, we study the perfectness of annihilator graphs of a vast range of rings. Indeed, it is shown that if [Formula: see text] is reduced with finitely many minimal primes or nonreduced, then [Formula: see text] is perfect.


2011 ◽  
Vol 03 (04) ◽  
pp. 413-421 ◽  
Author(s):  
T. TAMIZH CHELVAM ◽  
T. ASIR

For a commutative ring R, let Z(R) be its set of zero-divisors. The total graph of R, denoted by TΓ(R), is the undirected graph with vertex set R, and for distinct x, y ∈ R, the vertices x and y are adjacent if and only if x + y ∈ Z(R). Tamizh Chelvam and Asir studied about the domination in the total graph of a commutative ring R. In particular, it was proved that the domination number γ(TΓ(ℤn)) = p1 where p1 is the smallest prime divisor of n. In this paper, we characterize all the γ-sets in TΓ(ℤn). Also, we obtain the values of other domination parameters like independent, total and perfect domination numbers of the total graph on ℤn.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950006 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
S. Anukumar Kathirvel

Let [Formula: see text] be a finite commutative ring with nonzero identity and [Formula: see text] be the set of all units of [Formula: see text] The graph [Formula: see text] is the simple undirected graph with vertex set [Formula: see text] in which two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if there exists a unit element [Formula: see text] in [Formula: see text] such that [Formula: see text] is a unit in [Formula: see text] In this paper, we obtain degree of all vertices in [Formula: see text] and in turn provide a necessary and sufficient condition for [Formula: see text] to be Eulerian. Also, we give a necessary and sufficient condition for the complement [Formula: see text] to be Eulerian, Hamiltonian and planar.


2018 ◽  
Vol 17 (07) ◽  
pp. 1850121
Author(s):  
K. Selvakumar ◽  
M. Subajini ◽  
M. J. Nikmehr

Let [Formula: see text] be a commutative ring with identity and let [Formula: see text] be the set of zero-divisors of [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] is an essential ideal. In this paper, we classify all finite commutative rings with identity for which the genus of [Formula: see text] is two.


2012 ◽  
Vol 11 (04) ◽  
pp. 1250074 ◽  
Author(s):  
DAVID F. ANDERSON ◽  
AYMAN BADAWI

Let R be a commutative ring with nonzero identity, and let Z(R) be its set of zero-divisors. The total graph of R is the (undirected) graph T(Γ(R)) with vertices all elements of R, and two distinct vertices x and y are adjacent if and only if x + y ∈ Z(R). In this paper, we study the two (induced) subgraphs Z0(Γ(R)) and T0(Γ(R)) of T(Γ(R)), with vertices Z(R)\{0} and R\{0}, respectively. We determine when Z0(Γ(R)) and T0(Γ(R)) are connected and compute their diameter and girth. We also investigate zero-divisor paths and regular paths in T0(Γ(R)).


2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Ch. Eslahchi ◽  
A. M. Rahimi

The concept of the zero-divisor graph of a commutative ring has been studied by many authors, and thek-zero-divisor hypergraph of a commutative ring is a nice abstraction of this concept. Though some of the proofs in this paper are long and detailed, any reader familiar with zero-divisors will be able to read through the exposition and find many of the results quite interesting. LetRbe a commutative ring andkan integer strictly larger than2. Ak-uniform hypergraphHk(R)with the vertex setZ(R,k), the set of allk-zero-divisors inR, is associated toR, where eachk-subset ofZ(R,k)that satisfies thek-zero-divisor condition is an edge inHk(R). It is shown that ifRhas two prime idealsP1andP2with zero their only common point, thenHk(R)is a bipartite (2-colorable) hypergraph with partition setsP1−Z′andP2−Z′, whereZ′is the set of all zero divisors ofRwhich are notk-zero-divisors inR. IfRhas a nonzero nilpotent element, then a lower bound for the clique number ofH3(R)is found. Also, we have shown thatH3(R)is connected with diameter at most 4 wheneverx2≠0for all3-zero-divisorsxofR. Finally, it is shown that for any finite nonlocal ringR, the hypergraphH3(R)is complete if and only ifRis isomorphic toZ2×Z2×Z2.


Sign in / Sign up

Export Citation Format

Share Document