Evaluation of genetic resources of hard red spring wheat with highly dormant seeds and their application in breeding

2010 ◽  
Vol 12 (2) ◽  
pp. 44-53
Author(s):  
Kouji Nakamichi ◽  
Nana Ashikaga ◽  
Masatomo Kurushima
Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 149
Author(s):  
Sergey Shepelev ◽  
Alexey Morgounov ◽  
Paulina Flis ◽  
Hamit Koksel ◽  
Huihui Li ◽  
...  

Western Siberia is one of the major spring wheat regions of Russia, cultivating over 7 Mha. The objective of the study was to evaluate the variation of macro- and microelements, and of trace metals in four distinct groups of genetic resources: primary synthetics from CIMMYT (37 entries), primary synthetics from Japan (8), US hard red spring wheat cultivars (14), and material from the Kazakhstan–Siberian Network on Spring Wheat Improvement (KASIB) (74). The experiment was conducted at Omsk State Agrarian University, using a random complete block design with four replicates in 2017 and 2018. Concentrations of 15 elements were included in the analysis: macroelements, Ca, K, Mg, P, and S; microelements, Fe, Cu, Mn, and Zn; toxic trace elements, Cd, Co, Ni; and trace elements, Mo, Rb, and Sr. Protein content was found to be positively correlated with the concentrations of 11 of the elements in one or both years. Multiple regression was used to adjust the concentration of each element, based on significant correlations with agronomic traits and macroelements. All 15 elements were evaluated for their suitability for genetic enhancement, considering phenotypic variation, their share of the genetic component in this variation, as well as the dependence of the element concentration on other traits. Three trace elements (Sr, Mo, and Co) were identified as traits that were relatively easy to enhance through breeding. These were followed by Ca, Cd, Rb, and K. The important biofortification elements Mn and Zn were among the traits that were difficult to enhance genetically. The CIMMYT and Japanese synthetics had significantly higher concentrations of K and Sr, compared to the local check. The Japanese synthetics also had the highest concentrations of Ca, S, Cd, and Mo. The US cultivars had concentrations of Ca as high as the Japanese synthetics, and the highest concentrations of Mg and Fe. KASIB’s germplasm had near-average values for most elements. Superior germplasm, with high macro- and microelement concentrations and low trace-element concentrations, was found in all groups of material included.


2011 ◽  
Vol 5 (3) ◽  
pp. 349-352 ◽  
Author(s):  
S. P. Lanning ◽  
G. R. Carlson ◽  
P. F. Lamb ◽  
D. Nash ◽  
D. M. Wichman ◽  
...  

Crop Science ◽  
1970 ◽  
Vol 10 (3) ◽  
pp. 220-223 ◽  
Author(s):  
Darrell. G. Wells ◽  
Charles L. Lay

Crop Science ◽  
1993 ◽  
Vol 33 (6) ◽  
pp. 1420-1420 ◽  
Author(s):  
S. P. Lanning ◽  
L. E. Talbert ◽  
G. D. Johnson

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1240
Author(s):  
Peder K. Schmitz ◽  
Joel K. Ransom

Agronomic practices, such as planting date, seeding rate, and genotype, commonly influence hard red spring wheat (HRSW, Triticum aestivum L. emend. Thell.) production. Determining the agronomic optimum seeding rate (AOSR) of newly developed hybrids is needed as they respond to seeding rates differently from inbred cultivars. The objectives of this research were to determine the AOSR of new HRSW hybrids, how seeding rate alters their various yield components, and whether hybrids offer increased end-use quality, compared to conventional cultivars. The performance of two cultivars (inbreds) and five hybrids was evaluated in nine North Dakota environments at five seeding rates in 2019−2020. Responses to seeding rate for yield and protein yield differed among the genotypes. The AOSR ranged from 3.60 to 5.19 million seeds ha−1 and 2.22 to 3.89 million seeds ha−1 for yield and protein yield, respectively. The average AOSR for yield for the hybrids was similar to that of conventional cultivars. However, the maximum protein yield of the hybrids was achieved at 0.50 million seeds ha−1 less than that of the cultivars tested. The yield component that explained the greatest proportion of differences in yield as seeding rates varied was kernels spike−1 (r = 0.17 to 0.43). The end-use quality of the hybrids tested was not superior to that of the conventional cultivars, indicating that yield will likely be the determinant of the economic feasibility of any future released hybrids.


Author(s):  
David F. Garvin ◽  
Linda Dykes

AbstractWheat (Triticum aestivum L.) breeding involves improvement of a wide range of traits. However, selection for these traits is only acceptable if the end use quality of the wheat is not compromised. In hard red spring wheat, the predominant end use of flour is bread. In this study, milling and baking quality characteristics were compared in the hard red spring wheat ‘Apogee’ and a near-isogenic line of Apogee (‘A30’) that contains a spontaneous segmental deletion of the long arm of chromosome arm 3DL that is associated with enhanced resistance to Fusarium head blight caused by the fungal pathogen Fusarium graminearum (Schwabe). Apogee and A30 were grown together in replicated greenhouse experiments, and the resultant grain was used to compare a diverse spectrum of grain characteristics and milling and baking properties of the grain in the two wheat genotypes. The major difference detected was a significant increase in protein content in A30, which had nearly 21% more flour protein than Apogee. This difference did not affect any of the flour properties or baking characteristics evaluated, suggesting that the increased protein concentrations in A30 are not associated with the principal seed storage properties associated with baking quality. These results indicate that despite the size of the deletion in A30, no key genes associated with end use quality are located on that chromosome segment. The deletion may therefore find use in efforts to enhance Fusarium head blight in hard red spring wheat.


Sign in / Sign up

Export Citation Format

Share Document