hybrid vigor
Recently Published Documents


TOTAL DOCUMENTS

345
(FIVE YEARS 85)

H-INDEX

28
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Zheng Jie ◽  
Aziz Khan ◽  
Zhou Bujin ◽  
Zhou Qiong ◽  
Najeeb Ullah ◽  
...  

Cytoplasmic male sterile (CMS) system has extensively been exploited for hybrid vigor in plant breeding programs. However, its application in many crops is limited due to poor understanding of molecular mechanism of fertility restoration. Using advanced analytical approaches, we elucidated molecular pathways regulating CMS induction and fertility restoration in cotton. Reproductive structures of a novel CMS (LD6A) and its maintainer (LD6B) line were analyzed for physiological and proteomic changes during the development process. Significant differential expression of proteins, such as Abrin, malate dehydrogenase, malic enzyme, isocitrate dehydrogenase, histone acetyltransferase was observed in CMS and its maintainer line. Transmission electron micrographs of anther tapetum showed that inner ridge of CMS mitochondria was relatively indistinct than that of LD6B with narrower membranous space at tetrad stage. Further, relatively higher reactive oxygen species were accumulated in the anther of CMS than its maintainer line at pollen mother cell and tetrad stage. We suggest that abnormal sequence of mitochondrial ribosome gene rps4 and rpl10 and high expression of ribosome-inactivating protein gene Abrin in CMS line damaged mitochondrial membrane and consequently induced pollen sterility. These data provide new insight into CMS mechanism in cotton crops and a tool to develop new CMS germplasm resources.


2021 ◽  
Author(s):  
Xingxia Geng ◽  
Xiaoxia Wang ◽  
Jingchen Wang ◽  
Xuetong Yang ◽  
lingli zhang ◽  
...  

Thermo-sensitive male sterility is of vital importance to heterosis, or hybrid vigor in crop production and hybrid breeding. Therefore, it is meaningful to study the function of the genes related to pollen development and male sterility, which is still not fully understand currently. Here, we conducted comparative analyses to screen fertility related genes using RNA-seq, iTRAQ, and PRM-based assay. A gene encoding expansin protein in wheat, TaEXPB5, was isolated in KTM3315A, which was in the cell wall and preferentially upregulated expression in the fertility anthers. The silencing of TaEXPB5 displayed pollen abortion, the declination or sterility of fertility. Further, cytological investigation indicated that the silencing of TaEXPB5 induced the early degradation of tapetum and abnormal development of pollen wall. These results revealed that the silencing of TaEXPB5 could eliminate the effects of temperature on male fertility, and resulting in functional loss of fertility conversion, which implied that TaEXPB5 may be essential for anther or pollen development and male fertility of KTM3315A. These findings provide a novel insight into molecular mechanism of fertility conversion for thermo-sensitive cytoplasmic male-sterility wheat, and contribute to the molecular breeding of hybrid wheat in the future.


2021 ◽  
pp. 108-117
Author(s):  
Begna Temesgen

Information on combining ability and heterosis of parents and crossings is crucial in breeding efforts. Genetic variety is crucial to the effectiveness of yield improvement efforts because it helps to broaden gene pools in any given crop population. The genotype's ability to pass the intended character to the offspring is referred to as combining ability. As a result, information on combining ability is required to determine the crossing pairs in the production of hybrid varieties. Heterosis is the expression of an F1 hybrid's dominance over its parents in a given feature, as measured not by the trait's absolute value, but by its practical use. To put it another way, heterosis is defined as an increase in the character value of F1 hybrids when compared to the average value of both parents. A plant breeder's ultimate goal is to achieve desirable heterosis (hybrid vigor). In a variety of crop species, heterosis has been widely employed to boost output and extend the adaptability of hybrid types. A crucial requirement for discovering crosses with significant levels of exploitable heterosis is knowledge of the quantity of heterosis in different cross combinations. Any crop improvement program's success is contingent on the presence of a significant level of genetic diversity and heritability. The lack of a broad genetic foundation is the most significant constraint to crop improvement and a major bottleneck in breeding operations. Heterosis is a critical factor in hybrid generation, particularly for traits driven by non-additive gene activity. To get the most out of heterosis for hybrid cultivar production, germplasm must be divided into distinct heterotic groups. Similarly, knowledge on genetic diversity is critical for hybrid breeding and population improvement initiatives because it allows them to analyze genetic diversity, characterize germplasm, and categorize it into different heterotic groupings. In general, general combining ability is used to detect a line's average performance in a hybrid combination, whereas specific combining ability is used to find circumstances where definite combinations perform better or worse than expected based on the mean performance of the lines involved.


2021 ◽  
Vol 118 (47) ◽  
pp. e2109332118
Author(s):  
Devon Birdseye ◽  
Laura A. de Boer ◽  
Hua Bai ◽  
Peng Zhou ◽  
Zhouxin Shen ◽  
...  

The use of hybrids is widespread in agriculture, yet the molecular basis for hybrid vigor (heterosis) remains obscure. To identify molecular components that may contribute to trait heterosis, we analyzed paired proteomic and transcriptomic data from seedling leaf and mature leaf blade tissues of maize hybrids and their inbred parents. Nuclear- and plastid-encoded subunits of complexes required for protein synthesis in the chloroplast and for the light reactions of photosynthesis were expressed above midparent and high-parent levels, respectively. Consistent with previous reports in Arabidopsis, ethylene biosynthetic enzymes were expressed below midparent levels in the hybrids, suggesting a conserved mechanism for heterosis between monocots and dicots. The ethylene biosynthesis mutant, acs2/acs6, largely phenocopied the hybrid proteome, indicating that a reduction in ethylene biosynthesis may mediate the differences between inbreds and their hybrids. To rank the relevance of expression differences to trait heterosis, we compared seedling leaf protein levels to the adult plant height of 15 hybrids. Hybrid/midparent expression ratios were most positively correlated with hybrid/midparent plant height ratios for the chloroplast ribosomal proteins. Our results show that increased expression of chloroplast ribosomal proteins in hybrid seedling leaves is mediated by reduced expression of ethylene biosynthetic enzymes and that the degree of their overexpression in seedlings can quantitatively predict adult trait heterosis.


Euphytica ◽  
2021 ◽  
Vol 217 (12) ◽  
Author(s):  
Sonali Dutta ◽  
Felix T. Sattler ◽  
Anna Pucher ◽  
Inoussa Drabo ◽  
Ahmad Issaka ◽  
...  

AbstractPearl millet [Pennisetum glaucum (L.) R. Br.] is an important food-security crop to smallholder farmers in West Africa (WA). Breeding for high yield and stability is a major challenge in the harsh environments of WA but could be tackled by a more systematic exploitation of hybrid vigor and heterosis in breeding of both open-pollinated varieties (OPVs) and different types of hybrids. Knowledge of combining ability patterns and quantitative-genetic parameters is required for an efficient development of hybrid vigor and heterosis in breeding programs. Hence, our objectives were to complement other existing studies and estimate the combining ability of seven unique, highly diverse Sahelian pearl millet populations from Senegal, Mali, Benin, Burkina Faso, Niger, Sudan and Nigeria and the heterosis and stability of their 42 diallel-derived population hybrids (or hybrid populations) to inform pearl millet OPV and hybrid breeding. The materials were evaluated in six environments in WA in 2007. Grain yield (GY) exhibited an average panmictic mid-parent heterosis of 24%, ranging from − 1.51 to 64.69%. General combining ability (GCA) was significant across test environments as reflected by high heritability estimates and high GCA:SCA variance ratios. Thus, early selection for parental per se performance would be rewarding. The parental population from Sudan (IP8679) had strongly negative GCA for GY. Its lack of adaptation contributed to the predominance of additive effects in the present germplasm set. Parental populations PE02987 (Senegal), PE05344 (Mali) and ICMV IS 92222 (Niger) showed large positive GCA for GY. Their offspring, especially PE02987 × PE05344 and Kapelga × ICMV IS 92222, exhibited a high and stable GY across all test environments. Tapping the regional pearl millet genetic diversity and preselecting the crossing parents seem beneficial for OPV and hybrid breeding to increase pearl millet productivity in WA.


2021 ◽  
Vol 904 (1) ◽  
pp. 012001
Author(s):  
Z Abdulhamed ◽  
S A Abas ◽  
A H Noaman ◽  
N M Abood

Abstract A field experiment was carried out using four inbred lines of maize BK112, Inb17, ZP607 and Zm6, as they were entered into half-diallel cross-breeding program in the fall season 2019, and 10 genotypes (6 crosses + 4 parents) were obtained according to the second Griffing method, the first model, in the spring season of 2020, the behavior of these inbreds and their hybrids were evaluated with three irrigation intervals with the aim of obtaining one or more distinct hybrids of pure strains derived from maize Zea mays L. under the irrigation interval and the study of hybrid vigor. The experiment was carried out in the fields of a farmer in Anbar Governorate, using the RCBD randomized complete block design (split – plot) with three replications. The irrigation interval (4, 8 and 12) days occupied the main plots, while the inbred and hybrids occupied the sub-plots. The results of the statistical analysis showed a significant effect of genotypes on the studied traits. The studied hybrids Zm6 × ZP607 were distinguished by their weight of 300 grains and the grain yield (85.83 g and 186.70 g) respectively. The plants grown under the irrigation interval 4 days outperformed the grain yield of the plant by giving it the highest yield of 156.03 g. It did not differ significantly with the 8-day irrigation interval, while the yield decreased significantly at the 12-day irrigation interval with a decrease of 120.8% and 120.5% than the 4 and 8 irrigation treatments, respectively. It was also found that the interaction was significant and reached the highest grain yield with an irrigation interval of 8 days, 224.0 g. The hybrid Zm6 × ZP607 gave the highest positive hybrid vigor for individual plant yield, which was 119.24%, 126.72% and 166.05% for the irrigation interval of 4, 8 and 12 days, respectively. Therefore, the plant breeder can use the characteristics of the yield components as selection guides with the superior hybrids in yield and the strength of the hybrid.


2021 ◽  
Vol 914 (1) ◽  
pp. 012008
Author(s):  
S Sunarti ◽  
A Milaba ◽  
D T Adriyanti ◽  
A Nirsatmanto

Abstract Acacia hybrid is an interspecific hybrid resulting from crossing between Acacia mangium and A. auriculiformis either naturally or artificially. This study aimed to determine the morphological variation of artificial Acacia hybrid, obtained by full-diallel control crossing. Observed sample trees were clones at the clonal test, established in 2011 in Wonogiri, Central Java. Tree samples were taken by selecting clones categorized into the superior, intermediate, and inferior clones based on their growth at one year of age, with three different clones in each category. Parameters to be observed were morphological characters including quantitative (tree height, diameter breast height, bole length, phyllode length and phyllode width) and qualitative (stem form, stem straightness, bark type, bark color, phyllode shape, phyllode apex shape, conspicuousness of the main vein, and petiole color). The data quantitative and qualitative were then scored and analyzed using NCSS series 12 software for cluster analysis. The results showed that morphological characters of Acacia hybrid clones varied across the tree categories. Furthermore, the dendrogram showed that the characters of Acacia hybrid grouped into two clusters: Cluster A dominated by superior and most intermediate clones, and Cluster B dominated by inferior clones. The study result implies the use of morphological characters of Acacia hybrid to select the hybrid vigor in a breeding program.


Author(s):  
Hina M. Makwana ◽  
P.R. Patel ◽  
D.G. Patel

Background: Clusterbean [Cyamopsis tetragonoloba (L.) Taub.] (2n=2x=14) is an under exploited legume belonging to family fabaceae. Clusterbean is a versatile legume crop cultivated mostly as animal feed, green manure green leaves as fodder, vegetable and cover crop. Clusterbean is a drought resistant, hardy, deep rooted annual legume crop. D2 statistics provides a measure of magnitude for divergence between two genotypes under comparison. For broadening the genetic base of cultivars, the genetic diversity present in cultivated and wild relatives must be explored. Generally, diverse germplasms are expected to give high hybrid vigor and hence, it necessitates studying genetic divergence among the existing varieties and genotypes for the identification of parents for hybridization programme. Methods: The present investigation was undertaken to study genetic variability in clusterbean [Cymopsis tetragonaloba (L.) Taub] with using a set of 40 genotypes at Agronomy Instructional Farm, Department of Agronomy, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar during Kharif 2019 in randomized block design with four replications. Mahalanobis (1928) D2 statistic was used for assessing the genetic divergence between different populations. Grouping of the genotypes in different clusters was done by using Tocher’s method. The inter-cluster distance was calculated by measuring the distance between clusters I and cluster II, between clusters I and cluster III, between clusters II and cluster III and so on. Likewise, one by one cluster was taken and their distances from other clusters were calculated. Result: The genetic diversity analysis revealed the formation of nine clusters suggested the presence of considerable genetic diversity among the 40 genotypes. The clustering pattern indicated that geographic diversity was not associated with genetic diversity. The analysis of per cent contribution of various characters towards the expression of total genetic divergence indicated that, the number of branches per plant followed by gum content, days to maturity, days to flowering contributed maximum towards total genetic divergence. On the basis of inter cluster distances, cluster IX was found to be more divergent. Therefore, it was concluded that the genotypes belonging to these cluster should be inter crossed in order to generate more variability.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1688
Author(s):  
Attiq ur Rehman ◽  
Trang Dang ◽  
Shanzay Qamar ◽  
Amina Ilyas ◽  
Reemana Fatema ◽  
...  

Heterosis refers to the increase in biomass, stature, fertility, and other characters that impart superior performance to the F1 progeny over genetically diverged parents. The manifestation of heterosis brought an economic revolution to the agricultural production and seed sector in the last few decades. Initially, the idea was exploited in cross-pollinated plants, but eventually acquired serious attention in self-pollinated crops as well. Regardless of harvesting the benefits of heterosis, a century-long discussion is continued to understand the underlying basis of this phenomenon. The massive increase in knowledge of various fields of science such as genetics, epigenetics, genomics, proteomics, and metabolomics persistently provide new insights to understand the reasons for the expression of hybrid vigor. In this review, we have gathered information ranging from classical genetic studies, field experiments to various high-throughput omics and computational modelling studies in order to understand the underlying basis of heterosis. The modern-day science has worked significantly to pull off our understanding of heterosis yet leaving open questions that requires further research and experimentation. Answering these questions would possibly equip today’s plant breeders with efficient tools and accurate choices to breed crops for a sustainable future.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 907
Author(s):  
Kevin Gimenez ◽  
Pierre Blanc ◽  
Odile Argillier ◽  
Jean-Baptiste Pierre ◽  
Jacques Le Le Gouis ◽  
...  

To meet the challenge of feeding almost 10 billion people by 2050, wheat yield has to double by 2050. However, over the past 20 years, yield increase has slowed down and even stagnated in the main producing countries. Following the example of maize, hybrids have been suggested as a solution to overcome yield stagnation in wheat. However, wheat heterosis is still limited and poorly understood. Gaining a better understanding of hybrid vigor holds the key to breed for better varieties. To this aim, we have developed and phenotyped for physiological and agronomic traits an incomplete factorial design consisting of 91 hybrids and their nineteen female and sixteen male parents. Monitoring the plant development with normalized difference vegetation index revealed that 89% of the hybrids including the five higher yielding hybrids had a longer grain filling phase with a delayed senescence that results in larger grain size. This average increase of 7.7% in thousand kernel weight translated to a positive mid-parent heterosis for grain yield for 86% of hybrids. In addition, hybrids displayed a positive grain protein deviation leading to a +4.7% heterosis in protein yield. These results shed light on the physiological bases underlying yield heterosis in wheat, paving new ways to breed for better wheat hybrids.


Sign in / Sign up

Export Citation Format

Share Document