scholarly journals Construction and Characterization of a Fluorescent Sendai Virus Carrying the Gene for Envelope Fusion Protein Fused with Enhanced Green Fluorescent Protein

2010 ◽  
Vol 74 (11) ◽  
pp. 2293-2298 ◽  
Author(s):  
Masao MIYAZAKI ◽  
Hiroaki SEGAWA ◽  
Tetsuro YAMASHITA ◽  
Yafeng ZHU ◽  
Kaoru TAKIZAWA ◽  
...  
2006 ◽  
Vol 309 (1-2) ◽  
pp. 130-138 ◽  
Author(s):  
Qi-Lai Huang ◽  
Cheng Chen ◽  
Yun-Zi Chen ◽  
Chen-Guang Gong ◽  
Lin Cao ◽  
...  

2007 ◽  
Vol 196 (s2) ◽  
pp. S313-S322 ◽  
Author(s):  
Hideki Ebihara ◽  
Steven Theriault ◽  
Gabriele Neumann ◽  
Judie B. Alimonti ◽  
Joan B. Geisbert ◽  
...  

2005 ◽  
Vol 86 (12) ◽  
pp. 3201-3208 ◽  
Author(s):  
Long P. Le ◽  
Jing Li ◽  
Vladimir V. Ternovoi ◽  
Gene P. Siegal ◽  
David T. Curiel

Canine adenovirus type 2 (CAV2) has become an attractive vector for gene therapy because of its non-pathogenicity and the lack of pre-existing neutralizing antibodies against this virus in the human population. Additionally, this vector has been proposed as a conditionally replicative adenovirus agent under the control of an osteocalcin promoter for evaluation in a syngeneic, immunocompetent canine model with spontaneous osteosarcoma. In this study, a CAV2 vector labelled with the fluorescent capsid fusion protein IX–enhanced green fluorescent protein (pIX–EGFP) was developed. Expression of the fluorescent fusion-protein label in infected cells with proper nuclear localization, and incorporation into virions, could be detected. The labelled virions could be visualized by fluorescence microscopy; this was applicable to the tracking of CAV2 infection, as well as localizing the distribution of the vector in tissues. Expression of pIX–EGFP could be exploited to detect the replication and spread of CAV2. These results indicate that pIX can serve as a platform for incorporation of heterologous proteins in the context of a canine adenovirus xenotype. It is believed that capsid-labelled CAV2 has utility for vector-development studies and for monitoring CAV2-based oncolytic adenovirus replication.


2006 ◽  
Vol 151 (9) ◽  
pp. 1783-1796 ◽  
Author(s):  
S. Hammoumi ◽  
C. Cruciere ◽  
M. Guy ◽  
A. Boutrouille ◽  
S. Messiaen ◽  
...  

2009 ◽  
Vol 14 (9) ◽  
pp. 1076-1091 ◽  
Author(s):  
Simone Kredel ◽  
Michael Wolff ◽  
Jörg Wiedenmann ◽  
Barbara Moepps ◽  
G. Ulrich Nienhaus ◽  
...  

To study CXCR2 modulated arrestin redistribution, the authors employed arrestin as a fusion protein containing either the Aequorea victoria—derived enhanced green fluorescent protein (EGFP) or a recently developed mutant of eqFP611, a red fluorescent protein derived from Entacmaea quadricolor. This mutant, referred to as RFP611, had earlier been found to assume a dimeric quarternary structure. It was therefore employed in this work as a “tandem” (td) construct for pseudo monomeric fusion protein labeling. Both arrestin fusion proteins, containing either td RFP611 (Arr td RFP611) or enhanced green fluorescent protein (EGFP; Arr EGFP), were found to colocalize with internalized fluorescently labeled Gro α a few minutes after Gro α addition. Intriguingly, however, Arr td RFP611 and Arr EGFP displayed distinct cellular distribution patterns in the absence of any CXCR2 activating ligand. Under these conditions, Arr td RFP611 showed a largely homoge neous cytosolic distribution, whereas Arr EGFP segregated, to a large degree, into granular spots. These observations indi cate a higher sensitivity of Arr EGFP to the constitutive activity of CXCR2 and, accordingly, an increased arrestin redistribution to coated pits and endocytic vesicles. In support of this interpretation, the authors found the known CXCR2 antagonist Sch527123 to act as an inverse agonist with respect to Arr EGFP redistribution. The inverse agonistic properties of Sch527123 were confirmed in vitro in a guanine nucleotide binding assay, revealing an IC50 value similar to that observed for Arr EGFP redistribution. Thus, the redistribution assay, when based on Arr EGFP, enables the profiling of antagonistic test compounds with respect to inverse agonism. When based on Arr td RFP611, the assay may be employed to study CXCR2 agonism or neutral antagonism. ( Journal of Biomolecular Screening 2009:1076 1091)


2015 ◽  
Vol 29 (9) ◽  
pp. 3817-3827 ◽  
Author(s):  
Katie R. Young ◽  
Guillaume Arthus-Cartier ◽  
Karen K. Yam ◽  
Pierre-Olivier Lavoie ◽  
Nathalie Landry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document