scholarly journals Enhancement of symbiotic nitrogen fixation activity of Bradyrhizobium japonicum by acridine orange.

1986 ◽  
Vol 50 (4) ◽  
pp. 1061-1062 ◽  
Author(s):  
Takashi OZAWA ◽  
Masuro YAMAGUCHI
2019 ◽  
Vol 32 (9) ◽  
pp. 1196-1209
Author(s):  
Zaiyong Si ◽  
Qianqian Yang ◽  
Rongrong Liang ◽  
Ling Chen ◽  
Dasong Chen ◽  
...  

Little is known about the genes participating in digalactosyldiacylglycerol (DGDG) synthesis during nodule symbiosis. Here, we identified full-length MtDGD1, a synthase of DGDG, and characterized its effect on symbiotic nitrogen fixation in Medicago truncatula. Immunofluorescence and immunoelectron microscopy showed that MtDGD1 was located on the symbiosome membranes in the infected cells. β-Glucuronidase histochemical staining revealed that MtDGD1 was highly expressed in the infection zone of young nodules as well as in the whole mature nodules. Compared with the control, MtDGD1-RNA interference transgenic plants exhibited significant decreases in nodule number, symbiotic nitrogen fixation activity, and DGDG abundance in the nodules, as well as abnormal nodule and symbiosome development. Overexpression of MtDGD1 resulted in enhancement of nodule number and nitrogen fixation activity. In response to phosphorus starvation, the MtDGD1 expression level was substantially upregulated and the abundance of nonphospholipid DGDG was significantly increased in the roots and nodules, accompanied by corresponding decreases in the abundance of phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Overall, our results indicate that DGD1 contributes to effective nodule organogenesis and nitrogen fixation by affecting the synthesis and content of DGDG during symbiosis.


2009 ◽  
Vol 57 (2) ◽  
pp. 254-263 ◽  
Author(s):  
Yoshikazu Shimoda ◽  
Fuyuko Shimoda-Sasakura ◽  
Ken-ichi Kucho ◽  
Norihito Kanamori ◽  
Maki Nagata ◽  
...  

2010 ◽  
Vol 5 (4) ◽  
pp. 440-443 ◽  
Author(s):  
Akiyoshi Tominaga ◽  
Maki Nagata ◽  
Koichi Futsuki ◽  
Hidetoshi Abe ◽  
Toshiki Uchiumi ◽  
...  

2009 ◽  
Vol 8 ◽  
pp. 32-39
Author(s):  
S.Ya. Kots ◽  
S.M. Malychenko ◽  
P.M. Mamenko ◽  
G.M. Drozdenko

By using strain of Escherichia coli with build-in plasmid pSUP2021::Tn5 the transposon mutagenesis of Bradyrhizobium japonicum (strains 646, 614a and 71t) was performed. The highest formation frequency of kanamycinresistant mutants was 10-6 (B. japonicum 646). Among the 1500 mutants obtained, the best were selected by the “virulence”, “nitrogen fixation activity” and “symbiosis efficiency” criteria. In spite of different symbiotic characteristics of the selected Tn-5 mutants no considerable differences in their protein composition were determined. The authors made conclusion on the possibility of use of transposon mutagenesis in order to obtain the new forms of slowgrowing bacteria.


2018 ◽  
Vol 9 (2) ◽  
pp. 148-155
Author(s):  
S. Y. Kots ◽  
T. P. Mamenko ◽  
A. V. Pavlyshche

The dynamics of the nitrogen fixation activity of the root nodules, the growth of the vegetative mass of plants and the change in the activity of antioxidant enzymes (superoxide dismutase, ascorbate and guaiacol peroxidase) in different soybean organs for treatment of seeds by rhizobia incubated with lectin, in combination with fungicides have been studied. The objects of the study were symbiotic systems formed with the participation of soybean (Glycine max (L.) Merr.) Almaz and Bradyrhizobium japonicum (standard strain 634b) incubated with lectin. As disinfectants of soybean seeds, the following preparations with fungicidal activity were used – Maxim XL 035 PS, Fever, Standak Top according to one rate of active substance consumption of each preparation specified by the manufacturer. One part of the seeds treated with fungicides was inoculated with pure culture of suspension of rhizobia for one hour (titre of suspension concentration was 108 cells/ml). Another part of the seeds treated with fungicides was inoculated with rhizobia suspension, which was previously incubated with a solution of commercial lectin soybean at a concentration of 100 μg/ml. The research was conducted in strictly controlled conditions of a model vegetative experiment using microbiological, physiological, biochemical methods, gas chromatography, spectrophotometry. It was found that processing of soybean seeds with fungicides (Fever and Maxim XL) together with rhizobium inoculation contributed to the preservation of the nitrogen fixation activity of the root nodules and the growth of vegetative mass of plants. Under these conditions, the intensification of the activity of superoxide dismutase and ascorbate peroxidase was observed, as well as inhibition of the activity of guaiacol peroxidase in soybean root nodules in the phase of three true leaves and increased activity of all investigated enzymes in the phase of mass flowering. It has been established that the use of complex treatment of seeds by soybean rhizobia incubated with lectin and fungicides leads to an increase in the activity of superoxide dismutase and guaiacol peroxidase in root nodules in the phase of three true leaves and the growth of the activity of ascorbate peroxidase in the phase of mass flowering. At the same time, the inhibition of the growth of vegetative mass of plants and their symbiotic properties occurred, as evidenced by the decrease in the nitrogen fixation activity of the root nodules for the joint treatment of seeds with fungicides and lectin. A specific reaction of investigated enzymes in the roots and leaves of soybean was shown, which was more pronounced in the phase of three true leaves, indicating the development of a typical antioxidant reaction to a complex treatment, as a kind of stress that is leveled to the phase of mass flowering. The degree of reaction of antioxidant enzymes in the studied symbiotic systems Glycine max – Bradyrhizobium japonicum depends on the nature of the active substance fungicides and the manifestation of their joint effect in a complex with rhizobia incubated with lectin.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Manabu Tobisa ◽  
Masataka Shimojo ◽  
Yasuhisa Masuda

We investigated the root distribution and nitrogen fixation activity of American jointvetch (Aeschynomene americanaL.) cv. Glenn, under waterlogging treatment. The plants were grown in pots under three different treatments: no waterlogging (control), 30 days of waterlogging (experiment 1), and 40 days of waterlogging (experiment 2). The plants were subjected to the treatments on day 14 after germination. Root dry matter (DM) weight distribution of waterlogged plants was shallower than controls after day 20 of waterlogging. Throughout the study period, the total root DM weight in waterlogged plants was similar to that in the controls. Enhanced rooting (adventitious roots) and nodule formation at the stem base were observed in waterlogged plants after day 20 of waterlogging. The average DM weight of individual nodules on the region of the stem between the soil surface and water surface of waterlogged plants was similar to that of individual taproot nodules in the controls. Waterlogged plants had slightly greater plant DM weight than the controls after 40 days of treatment. The total nitrogenase activity (TNA) of nodules and nodule DM weight were higher in waterlogged plants than in the controls. Waterlogged American jointvetch had roots with nodules both around the soil surface and in the area between the soil surface and water surface after 20 days of waterlogging, and they maintained high nitrogenase activity and net assimilation rate that resulted in an increased growth rate.


Sign in / Sign up

Export Citation Format

Share Document