scholarly journals SWOT analysis on geothermal energy development in Indonesia and fiscal incentives needed

Author(s):  
Abdul Aziz
Processes ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 178 ◽  
Author(s):  
Richeng Liu ◽  
Yujing Jiang

The fluid flow in fractured porous media plays a significant role in the characteristic/assessment of deep underground reservoirs such as CO2 sequestration [1–3], enhanced oil recovery [4,5] and geothermal energy development [...]


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2754 ◽  
Author(s):  
Indre Siksnelyte ◽  
Edmundas Zavadskas ◽  
Dalia Streimikiene ◽  
Deepak Sharma

The measurement of sustainability is actively used today as one of the main preventative instruments in order to reduce the decline of the environment. Sustainable decision-making in solving energy issues can be supported and contradictory effects can be evaluated by scientific achievements of multi-criteria decision-making (MCDM) techniques. The main goal of this paper is to overview the application of decision-making methods in dealing with sustainable energy development issues. In this study, 105 published papers from the Web of Science Core Collection (WSCC) database are selected and reviewed, from 2004 to 2017, related to energy sustainability issues and MCDM methods. All the selected papers were categorized into 9 fields by the application area and into 10 fields by the used method. After the categorization of the scientific articles and detailed analysis, SWOT analysis of MCDM approaches in dealing with sustainable energy development issues is provided. The widespread application and use of MCDM methods confirm that MCDM methods can help decision-makers in solving energy sustainability problems and are highly popular and used in practice.


SIMULATION ◽  
2018 ◽  
Vol 95 (9) ◽  
pp. 861-872
Author(s):  
Yong Xiao ◽  
Jianchun Guo ◽  
Hehua Wang ◽  
Lize Lu ◽  
Mengting Chen

Geothermal energy is renewable, clean and green energy generated and stored in the Earth’s crust. The most important consideration for geothermal energy development in non-hydrothermal scenarios is the use of hydraulic fracturing technology to establish an effective network pathway to conduct fluid from injectors to producers. Hydraulic fracturing in geothermal wells is referred to as hydro-shearing and the aim is to improve the conductivity of natural fractures. In this paper, linear elastic constitutive relationships and shear strength of discontinuities in the pre-peak region are initially considered. Based on the dynamic frictional weakening, a proved conductive aperture and the post-peak elastoplastic constitutive models are proposed to analyze the deformation and conductivity of the natural fracture. Simulation research has shown that the joint compressive strength (JCS) mainly affects the shear displacement and hardly affects the dilation. The joint roughness coefficient (JRC) is more important for decreasing the shear strength and improves the dilation aperture. To no one’s surprise, reducing the effective normal stress is the best way for increasing the shear displacement, dilation and conductivity of the natural fracture. Almost 90% of the slip displacement and dilation occurs after fracture shear failure. This displacement not only increases the hydraulic conductivity of the fracture, but also reduces the required surface pumping pressure.


Sign in / Sign up

Export Citation Format

Share Document