An Image Encryption Algorithm of Bit-plane Based on Hyper-chaotic System

2015 ◽  
Vol 12 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Zhenrong Lin
2017 ◽  
Vol 28 (05) ◽  
pp. 1750069 ◽  
Author(s):  
Xiuli Chai ◽  
Zhihua Gan ◽  
Yang Lu ◽  
Yiran Chen ◽  
Daojun Han

A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.


Author(s):  
Yin Dai ◽  
Huanzhen Wang ◽  
Yuyi Wang

Due to the rapid rise of telemedicine, a lot of patients’ information will be transmitted through the Internet. However, the patients’ information is related to personal privacy, therefore, patients’ information needs to be encrypted when transmited and stored. Medical image encryption is a part of it. Due to the informative fine features of medical images, a common image encryption algorithm is no longer applied. Common encryption algorithm has a single theory based on chaos image encryption algorithm, other encryption algorithms are based on information entropy. However, the images processed with these cipher text encryption algorithm are cyclical, the outline is clear and the anti-tamper capability is not strong. In view of the bit being the smallest measure unit of pixel, in order to overcome the weakness from above algorithm, and take the advantage of the chaotic system, this paper will present a chaotic medical image encryption algorithm based on bit-plane decomposition. The paper combines the image encryption and chaotic system to improve the security. This way, it can increase the security of key space and image effectively. The histogram, pixel correlation, number of pixels change rate (NPCR) and other experimental results show that the algorithm satisfies the desired effect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yi He ◽  
Ying-Qian Zhang ◽  
Xin He ◽  
Xing-Yuan Wang

AbstractIn this paper, a novel image encryption algorithm based on the Once Forward Long Short Term Memory Structure (OF-LSTMS) and the Two-Dimensional Coupled Map Lattice (2DCML) fractional-order chaotic system is proposed. The original image is divided into several image blocks, each of which is input into the OF-LSTMS as a pixel sub-sequence. According to the chaotic sequences generated by the 2DCML fractional-order chaotic system, the parameters of the input gate, output gate and memory unit of the OF-LSTMS are initialized, and the pixel positions are changed at the same time of changing the pixel values, achieving the synchronization of permutation and diffusion operations, which greatly improves the efficiency of image encryption and reduces the time consumption. In addition the 2DCML fractional-order chaotic system has better chaotic ergodicity and the values of chaotic sequences are larger than the traditional chaotic system. Therefore, it is very suitable to image encryption. Many simulation results show that the proposed scheme has higher security and efficiency comparing with previous schemes.


2021 ◽  
Author(s):  
Hegui Zhu ◽  
Jiangxia Ge ◽  
Wentao Qi ◽  
Xiangde Zhang ◽  
Xiaoxiong Lu

Abstract Owning to complex properties of ergodicity, non-periodic ability and sensitivity to initial states, chaotic systems are widely used in cryptography. In this paper, we propose a sinusoidal--polynomial composite chaotic system (SPCCS), and prove that it satisfies Devaney's definition of chaos: the sensitivity to initial conditions, topological transitivity and density of periodic points. The experimental results show that the SPCCS has better unpredictability and more complex chaotic behavior than the classical chaotic maps. Furthermore, we provide a new image encryption algorithm combining pixel segmentation operation, block chaotic matrix confusing operation, and pixel diffusion operation with the SPCCS. Detailed simulation results verify effectiveness of the proposed image encryption algorithm.


2018 ◽  
Vol 8 (9) ◽  
pp. 1540 ◽  
Author(s):  
Xiaoqiang Zhang ◽  
Xuesong Wang

With the increasing use of multimedia in communications, the content security of remote-sensing images attracts much attention in both the academia and industry. The Advanced Encryption Standard (AES) is a famous symmetric cryptosystem. A symmetric remote-sensing image encryption algorithm using AES is presented. Firstly, to reduce the encryption times, the sender groups 16 pixel values together, and converts them into big integers; secondly, the sender encrypts big integers with AES and the chaotic system; finally, the encrypted image is obtained from encrypted big integers. Simulation data show that our algorithm exhibits both the high security and efficiency.


Sign in / Sign up

Export Citation Format

Share Document