Spatial Geometric Cells — Quasipolyhedra

2021 ◽  
pp. 30-38
Author(s):  
A. Efremov ◽  
T. Vereschagina ◽  
Nina Kadykova ◽  
Vyacheslav Rustamyan

Tiling of three-dimensional space is a very interesting and not yet fully explored type of tiling. Tiling by convex polyhedra has been partially investigated, for example, works [1, 15, 20] are devoted to tiling by various tetrahedra, once tiling realized by Platonic, Archimedean and Catalan bodies. The use of tiling begins from ancient times, on the plane with the creation of parquet floors and ornaments, in space - with the construction of houses, but even now new and new areas of applications of tiling are opening up, for example, a recent cycle of work on the use of tiling for packaging information [17]. Until now, tiling in space has been considered almost always by faceted bodies. Bodies bounded by compartments of curved surfaces are poorly considered and by themselves, one can recall the osohedra [14], dihedra, oloids, biconuses, sphericon [21], the Steinmetz figure [22], quasipolyhedra bounded by compartments of hyperbolic paraboloids described in [3] the astroid ellipsoid and hyperbolic tetrahedra, cubes, octahedra mentioned in [6], and tiling bodies with bounded curved surfaces was practically not considered, except for the infinite three-dimensional Schwartz surfaces, but they were also considered as surfaces, not as bodies., although, of course, in each such surface, you can select an elementary cell and fill it with a body, resulting in a geometric cell. With this work, we tried to eliminate this gap and described approaches to identifying geometric cells bounded by compartments of curved surfaces. The concept of tightly packed frameworks is formulated and an approach for their identification are described. A graphical algorithm for identifying polyhedra and quasipolyhedra - geometric cells are described.

1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


Sign in / Sign up

Export Citation Format

Share Document