Visual Attention and Perception in Three-Dimensional Space

Author(s):  
Fred H. Previc ◽  
Lisa F. Weinstein ◽  
Bruno G. Breitmeyer
2011 ◽  
Vol 179-180 ◽  
pp. 1322-1326
Author(s):  
Ru Ting Xia

The aim of the present experiment was to investigate visual attentional allocation of top-down and bottom-up cues in three-dimensional (3D) space. Near and far stimuli were used by a 3D attention measurement apparatus. Two experiments were conducted in order to examine top-down and bottom-up controls of visual attention. In the experiment 1, the cue about the location of a target by means of location information. In the experiment 2, color cue by brief change of color at target locations was presented. Observers were required to judge whether the target presented nearer than fixation point or further than it. The results in experiment 1 and experiment 2 show that both location and color cue have the effect on reaction time, and that shift of attention were faster from far to near than the reverse. These findings suggest that (1) attention in 3D space might be operated with both location and color controls included the depth information, (2) the shift of visual attention in 3D space has an asymmetric characteristic in depth.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Kei Kanari ◽  
Hirohiko Kaneko

OKN corresponding to the motion of the fixating area occurs when a stimulus has two areas separated in depth containing motion in different directions. However, when attention and vergence are separately directed to areas with different motions and depths, it remains unclear which property of attention and vergence is prioritized to initiate OKN. In this study, we investigated whether OKN corresponding to motion in the attending or fixating area occurred when two motions with different directions were presented in the central and peripheral visual fields separated in depth. Results show that OKN corresponding to attended motion occurred when observers maintained vergence on the peripheral stimulus and attended to the central stimulus. However, OKN corresponding to each motion in the attending area and in the fixating area occurred when observers maintained vergence on the central stimulus and attended to the peripheral stimulus. The accuracy rate of the attentional task was the lowest in this condition. These results support the idea that motion in the attended area is essential for occurrence of OKN, and vergence and retinal position affect the strength of attention.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


Sign in / Sign up

Export Citation Format

Share Document