scholarly journals Monitoring observations of meteor echo at the EKB ISTP SB RAS radar: algorithms, validation, statistics

2021 ◽  
Vol 7 (1) ◽  
pp. 47-58
Author(s):  
Roman Fedorov ◽  
Oleg Berngardt

The paper considers the implementation of algorithms for automatic search for signals scattered by meteor trails according to EKB ISTP SB RAS radar data. In general, the algorithm is similar to the algorithms adopted in specialized meteor systems. The algorithm is divided into two stages: detecting a meteor echo and determining its parameters. We show that on the day of the maximum Geminid shower, December 13, 2016, the scattered signals detected by the algorithm are foreshortening and correspond to scattering by irregularities extended in the direction of the meteor shower radiant. This confirms that the source of the signals detected by the algorithm is meteor trails. We implement an additional program for indirect trail height determination. It uses a decay time of echo and the NRLMSIS-00 atmosphere model to estimate the trail height. The dataset from 2017 to 2019 is used for further testing of the algorithm. We demonstrate a correlation in calculated Doppler velocity between the new algorithm and FitACF. We present a solution of the inverse problem of reconstructing the neutral wind velocity vector from the data obtained by the weighted least squares method. We compare calculated speeds and directions of horizontal neutral winds, obtained in the three-dimensional wind model, and the HWM-14 horizontal wind model. The algorithm allows real-time scattered signal processing and has been put into continuous operation at the EKB ISTP SB RAS radar.

2021 ◽  
Vol 7 (1) ◽  
pp. 59-73
Author(s):  
Roman Fedorov ◽  
Oleg Berngardt

The paper considers the implementation of algorithms for automatic search for signals scattered by meteor trails according to EKB ISTP SB RAS radar data. In general, the algorithm is similar to the algorithms adopted in specialized meteor systems. The algorithm is divided into two stages: detecting a meteor echo and determining its parameters. We show that on the day of the maximum Geminid shower, December 13, 2016, the scattered signals detected by the algorithm are foreshortening and correspond to scattering by irregularities extended in the direction of the meteor shower radiant. This confirms that the source of the signals detected by the algorithm is meteor trails. We implement an additional program for indirect trail height determination. It uses a decay time of echo and the NRLMSIS-00 atmosphere model to estimate the trail height. The dataset from 2017 to 2019 is used for further testing of the algorithm. We demonstrate a correlation in calculated Doppler velocity between the new algorithm and FitACF. We present a solution of the inverse problem of reconstructing the neutral wind velocity vector from the data obtained by the weighted least squares method. We compare calculated speeds and directions of horizontal neutral winds, obtained in the three-dimensional wind model, and the HWM-14 horizontal wind model. The algorithm allows real-time scattered signal processing and has been put into continuous operation at the EKB ISTP SB RAS radar.


SAGE Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 215824402110269
Author(s):  
Lang Liang

The Bass model is the most popular model for forecasting the diffusion process of a new product. However, the controlling parameters in it are unknown in practice and need to be determined in advance. Currently, the estimation of the controlling parameters has been approached by various techniques. In this case, a novel optimization-based parameter estimation (OPE) method for the Bass model is proposed in the theoretical framework of system dynamics ( SD). To do this, the SD model of the Bass differential equation is first established and then the corresponding optimization mathematical model is formulated by introducing the controlling parameters as design variable and the discrepancy of the adopter function to the reference value as objective function. Using the VENSIM software, the present SD optimization model is solved, and its effectiveness and accuracy are demonstrated by two examples: one involves the exact solution and another is related to the actual user diffusion problem from Chinese Mobile. The results show that the present OPE method can produce higher predicting accuracy of the controlling parameters than the nonlinear weighted least squares method and the genetic algorithms. Moreover, the reliability interval of the estimated parameters and the goodness of fitting of the optimal results are given as well to further demonstrate the accuracy of the present OPE method.


2010 ◽  
Vol 7 (5) ◽  
pp. 7383-7416 ◽  
Author(s):  
S. Ly ◽  
C. Charles ◽  
A. Degré

Abstract. Spatial interpolation of precipitation data is of great importance for hydrological modelling. Geostatistical methods (krigings) are widely used in spatial interpolation from point measurement to continuous surfaces. However, the majority of existing geostatistical algorithms are available only for single-moment data. The first step in kriging computation is the semi-variogram modelling which usually uses only one variogram model for all-moment data. The objective of this paper was to develop different algorithms of spatial interpolation for daily rainfall on 1 km2 regular grids in the catchment area and to compare the results of geostatistical and deterministic approaches. In this study, we used daily rainfall data from 70 raingages in the hilly landscape of the Ourthe and Ambleve catchments in Belgium (2908 km2). This area lies between 35 and 693 m in elevation and consists of river networks, which are tributaries of the Meuse River. For geostatistical algorithms, Cressie's Approximate Weighted Least Squares method was used to fit seven semi-variogram models (logarithmic, power, exponential, Gaussian, rational quadratic, spherical and penta-spherical) to daily sample semi-variogram on a daily basis. Seven selected raingages were used to compare the interpolation performance of these algorithms applied to many degenerated-raingage cases. Spatial interpolation with the geostatistical and Inverse Distance Weighting (IDW) algorithms outperformed considerably interpolation with the Thiessen polygon that is commonly used in various hydrological models. Kriging with an External Drift (KED) and Ordinary Cokriging (OCK) presented the highest Root Mean Square Error (RMSE) between the geostatistical and IDW methods. Ordinary Kriging (ORK) and IDW were considered to be the best methods, as they provided smallest RMSE value for nearly all cases.


Sign in / Sign up

Export Citation Format

Share Document