scholarly journals Is Schrödinger's Cat Alive?

Quanta ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 70 ◽  
Author(s):  
Mani L. Bhaumik

Erwin Schrödinger is famous for presenting his wave equation of motion that jump-started quantum mechanics. His disenchantment with the Copenhagen interpretation of quantum mechanics led him to unveil the Schrödinger's cat paradox, which did not get much attention for nearly half a century. In the meantime, disappointment with quantum mechanics turned his interest to biology facilitating, albeit in a peripheral way, the revelation of the structure of DNA. Interest in Schrödinger's cat has recently come roaring back making its appearance conspicuously in numerous scientific articles. From the arguments presented here, it would appear that the legendary Schrödinger's cat is here to stay, symbolizing a profound truth that quantum reality exists at all scales; but we do not observe it in our daily macroscopic world as it is masked for all practical purposes, most likely by environmental decoherence with irreversible thermal effects.Quanta 2017; 6: 70–80.

2004 ◽  
Vol 02 (03) ◽  
pp. 407-418 ◽  
Author(s):  
TABISH QURESHI

A thought experiment, proposed by Karl Popper, which has been experimentally realized recently, is critically examined. A basic flaw in Popper's argument which has also been prevailing in subsequent debates, is pointed out. It is shown that Popper's experiment can be understood easily within the Copenhagen interpretation of quantum mechanics. An alternate experiment, based on discrete variables, is proposed, which constitutes Popper's test in a clearer way. It refutes the argument of absence of nonlocality in quantum mechanics.


2021 ◽  
Vol 113 (1) ◽  
pp. 137-156
Author(s):  
Jeanne Peijnenburg ◽  
David Atkinson

Abstract How certain is Heisenberg’s uncertainty principle?Heisenberg’s uncertainty principle is at the heart of the orthodox or Copenhagen interpretation of quantum mechanics. We first sketch the history that led up to the formulation of the principle. Then we recall that there are in fact two uncertainty principles, both dating from 1927, one by Werner Heisenberg and one by Earle Kennard. Finally, we explain that recent work in physics gives reason to believe that the principle of Heisenberg is invalid, while that of Kennard still stands.


Quanta ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 68-87 ◽  
Author(s):  
Andrea Oldofredi ◽  
Michael Esfeld

Paul Dirac has been undoubtedly one of the central figures of the last century physics, contributing in several and remarkable ways to the development of quantum mechanics; he was also at the centre of an active community of physicists, with whom he had extensive interactions and correspondence. In particular, Dirac was in close contact with Bohr, Heisenberg and Pauli. For this reason, among others, Dirac is generally considered a supporter of the Copenhagen interpretation of quantum mechanics. Similarly, he was considered a physicist sympathetic with the positivistic attitude which shaped the development of quantum theory in the 1920s. Against this background, the aim of the present essay is twofold: on the one hand, we will argue that, analyzing specific examples taken from Dirac's published works, he can neither be considered a positivist nor a physicist methodologically guided by the observability doctrine. On the other hand, we will try to disentangle Dirac's figure from the mentioned Copenhagen interpretation, since in his long career he employed remarkably different—and often contradicting—methodological principles and philosophical perspectives with respect to those followed by the supporters of that interpretation.Quanta 2019; 8: 68–87.


Author(s):  
Joaquin Trujillo

The articles provides a phenomenological reading of the Many-Worlds Interpretation (MWI) of quantum mechanics and its answer to the measurement problem, or the question of “why only one of a wave function’s probable values is observed when the system is measured.” Transcendental-phenomenological and hermeneutic-phenomenological approaches are employed. The project comprises four parts. Parts one and two review MWI and the standard (Copenhagen) interpretation of quantum mechanics. Part three reviews the phenomenologies. Part four deconstructs the hermeneutics of MWI. It agrees with the confidence the theory derives from its (1) unforgiving appropriation of the Schrödinger equation and (2) association of branching universes with the evolution of the wave function insofar as that understanding comes from the formalism itself. Part four also reveals the hermeneutical shortcomings of the standard interpretation.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Aaron C.H. Davey

The father of quantum mechanics, Erwin Schrodinger, was one of the most important figures in the development of quantum theory. He is perhaps best known for his contribution of the wave equation, which would later result in his winning of the Nobel Prize for Physics in 1933. The Schrodinger wave equation describes the quantum mechanical behaviour of particles and explores how the Schrodinger wave functions of a system change over time. This project is concerned about exploring the one-dimensional case of the Schrodinger wave equation in a harmonic oscillator system. We will give the solutions, called eigenfunctions, of the equation that satisfy certain conditions. Furthermore, we will show that this happens only for particular values called eigenvalues.


Sign in / Sign up

Export Citation Format

Share Document