scholarly journals Solutions to indefinite weakly coupled cooperative elliptic systems

Author(s):  
Mónica Clapp ◽  
Andrzej Szulkin

We study the elliptic system \begin{equation*} \begin{cases} -\Delta u_1 - \kappa_1u_1 = \mu_1|u_1|^{p-2}u_1 + \lambda\alpha|u_1|^{\alpha-2}|u_2|^\beta u_1, \\ -\Delta u_2 - \kappa_2u_2 = \mu_2|u_2|^{p-2}u_2 + \lambda\beta|u_1|^\alpha|u_2|^{\beta-2}u_2, \\ u_1,u_2\in D^{1,2}_0(\Omega), \end{cases} \end{equation*} where $\Omega$ is a bounded domain in $\mathbb R^N$, $N\geq 3$, $\kappa_1,\kappa_2\in\mathbb R$, $\mu_1,\mu_2,\lambda> 0$, $\alpha,\beta> 1$, and $\alpha + \beta = p\le 2^*:={2N}/({N-2})$. For $p\in (2,2^*)$ we establish the existence of a ground state and of a prescribed number of fully nontrivial solutions to this system for $\lambda$ sufficiently large. If $p=2^*$ and $\kappa_1,\kappa_2> 0$ we establish the existence of a ground state for $\lambda$ sufficiently large if, either $N\ge5$, or $N=4$ and neither $\kappa_1$ nor $\kappa_2$ are Dirichlet eigenvalues of $-\Delta$ in $\Omega$.

2021 ◽  
Vol 19 (1) ◽  
pp. 297-305
Author(s):  
Yuting Zhu ◽  
Chunfang Chen ◽  
Jianhua Chen ◽  
Chenggui Yuan

Abstract In this paper, we study the following generalized Kadomtsev-Petviashvili equation u t + u x x x + ( h ( u ) ) x = D x − 1 Δ y u , {u}_{t}+{u}_{xxx}+{\left(h\left(u))}_{x}={D}_{x}^{-1}{\Delta }_{y}u, where ( t , x , y ) ∈ R + × R × R N − 1 \left(t,x,y)\in {{\mathbb{R}}}^{+}\times {\mathbb{R}}\times {{\mathbb{R}}}^{N-1} , N ≥ 2 N\ge 2 , D x − 1 f ( x , y ) = ∫ − ∞ x f ( s , y ) d s {D}_{x}^{-1}f\left(x,y)={\int }_{-\infty }^{x}f\left(s,y){\rm{d}}s , f t = ∂ f ∂ t {f}_{t}=\frac{\partial f}{\partial t} , f x = ∂ f ∂ x {f}_{x}=\frac{\partial f}{\partial x} and Δ y = ∑ i = 1 N − 1 ∂ 2 ∂ y i 2 {\Delta }_{y}={\sum }_{i=1}^{N-1}\frac{{\partial }^{2}}{{\partial }_{{y}_{i}}^{2}} . We get the existence of infinitely many nontrivial solutions under certain assumptions in bounded domain without Ambrosetti-Rabinowitz condition. Moreover, by using the method developed by Jeanjean [13], we establish the existence of ground state solutions in R N {{\mathbb{R}}}^{N} .


Author(s):  
B. B. V. Maia ◽  
O. H. Miyagaki

In this paper, we investigate the existence and nonexistence of results for a class of Hamiltonian-Choquard-type elliptic systems. We show the nonexistence of classical nontrivial solutions for the problem \[ \begin{cases} -\Delta u + u= ( I_{\alpha} \ast |v|^{p} )v^{p-1} \text{ in } \mathbb{R}^{N},\\ -\Delta v + v= ( I_{\beta} \ast |u|^{q} )u^{q-1} \text{ in } \mathbb{R}^{N}, \\ u(x),v(x) \rightarrow 0 \text{ when } |x|\rightarrow \infty, \end{cases} \] when $(N+\alpha )/p + (N+\beta )/q \leq 2(N-2)$ (if $N\geq 3$ ) and $(N+\alpha )/p + (N+\beta )/q \geq 2N$ (if $N=2$ ), where $I_{\alpha }$ and $I_{\beta }$ denote the Riesz potential. Second, via variational methods and the generalized Nehari manifold, we show the existence of a nontrivial non-negative solution or a Nehari-type ground state solution for the problem \[ \begin{cases} -\Delta u + u= (I_{\alpha} \ast |v|^{\frac{\alpha}{2}+1})|v|^{\frac{\alpha}{2}-1}v + g(v) \hbox{ in } \mathbb{R}^{2},\\ - \Delta v + v= (I_{\beta} \ast |u|^{\frac{\beta}{2}+1})|u|^{\frac{\beta}{2}-1}u + f(u), \hbox{ in } \mathbb{R}^{2},\\ u,v \in H^{1}(\mathbb{R}^{2}), \end{cases} \] where $\alpha ,\,\beta \in (0,\,2)$ and $f,\,g$ have exponential critical growth in the Trudinger–Moser sense.


2019 ◽  
Vol 150 (4) ◽  
pp. 1737-1768 ◽  
Author(s):  
Djairo G. de Figueiredo ◽  
João Marcos do Ó ◽  
Jianjun Zhang

AbstractThe aim of this paper is to study Hamiltonian elliptic system of the form 0.1$$\left\{ {\matrix{ {-\Delta u = g(v)} & {{\rm in}\;\Omega,} \cr {-\Delta v = f(u)} & {{\rm in}\;\Omega,} \cr {u = 0,v = 0} & {{\rm on}\;\partial \Omega,} \cr } } \right.$$ where Ω ⊂ ℝ2 is a bounded domain. In the second place, we present existence results for the following stationary Schrödinger systems defined in the whole plane 0.2$$\left\{ {\matrix{ {-\Delta u + u = g(v)\;\;\;{\rm in}\;{\open R}^2,} \cr {-\Delta v + v = f(u)\;\;\;{\rm in}\;{\open R}^2.} \cr } } \right.$$We assume that the nonlinearities f, g have critical growth in the sense of Trudinger–Moser. By using a suitable variational framework based on the generalized Nehari manifold method, we obtain the existence of ground state solutions of both systems (0.1) and (0.2).


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Guanwei Chen ◽  
Shiwang Ma

We study a class of resonant cooperative elliptic systems and replace the Ambrosetti-Rabinowitz superlinear condition with general superlinear conditions. We obtain ground state solutions and infinitely many nontrivial solutions of this system by a generalized Nehari manifold method developed recently by Szulkin and Weth.


2018 ◽  
Vol 149 (04) ◽  
pp. 1037-1046
Author(s):  
A. Aghajani ◽  
C. Cowan

AbstractWe examine the elliptic system given by$$\left\{ {\matrix{ {-\Delta u = \lambda f(v)} \hfill &amp; {{\rm in }\,\,\Omega ,} \hfill \cr {-\Delta v = \gamma f(u)} \hfill &amp; {{\rm in }\,\,\Omega ,} \hfill \cr {u = v = 0} \hfill &amp; {{\rm on }\,\,\partial \Omega ,} \hfill \cr } } \right.$$where λ, γ are positive parameters, Ω is a smooth bounded domain in ℝNandfis aC2positive, nondecreasing and convex function in [0, ∞) such thatf(t)/t→ ∞ ast→ ∞. Assuming$$0 < \tau _-: = \mathop {\lim \inf }\limits_{t\to \infty } \displaystyle{{f(t){f}^{\prime \prime}(t)} \over {{f}^{\prime}{(t)}^2}} \les \tau _ + : = \mathop {\lim \sup }\limits_{t\to \infty } \displaystyle{{f(t){f}^{\prime \prime}(t)} \over {{f}^{\prime}{(t)}^2}} \les 2,$$we show that the extremal solution (u*,v*) associated with the above system is smooth provided thatN&lt; (2α*(2 − τ+) + 2τ+)/(τ+)max{1, τ+}, where α*&gt; 1 denotes the largest root of the second-order polynomial$$[P_{f}(\alpha,\tau_{-},\tau_{+}):=(2-\tau_{-})^{2} \alpha^{2}- 4(2-\tau_{+})\alpha+4(1-\tau_{+}).]$$As a consequence,u*,v* ∈L∞(Ω) forN&lt; 5. Moreover, if τ−= τ+, thenu*,v* ∈L∞(Ω) forN&lt; 10.


2010 ◽  
Vol 62 (1) ◽  
pp. 19-33
Author(s):  
Mohammed Bouchekif ◽  
Yasmina Nas

AbstractIn this paper we consider an elliptic system with an inverse square potential and critical Sobolev exponent in a bounded domain of ℝN. By variational methods we study the existence results.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Wenbo Wang ◽  
Jianwen Zhou ◽  
Yongkun Li

In the present paper, we consider the following Hamiltonian elliptic system with Choquard’s nonlinear term −Δu+Vxu=∫ΩGvy/x−yβdygv in Ω,−Δv+Vxv=∫ΩFuy/x−yαdyfu in Ω,u=0,v=0 on ∂Ω,where Ω⊂ℝN is a bounded domain with a smooth boundary, 0<α<N, 0<β<N, and F is the primitive of f, similarly for G. By establishing a strongly indefinite variational setting, we prove that the above problem has a ground state solution.


2017 ◽  
Vol 2017 ◽  
pp. 1-15
Author(s):  
Shengzhong Duan ◽  
Xian Wu

In the present paper, we consider the following Hamiltonian elliptic system HES: -Δu+bx·∇u+Vxu=Hvx,u,v,  x∈RN, -Δv-bx·∇v+Vxv=Hux,u,v,  x∈RN. A new existence result of nontrivial solutions is obtained for the system HES via variational methods for strongly indefinite problems, which generalizes some known results in the literatures.


2017 ◽  
Vol 20 (02) ◽  
pp. 1650062 ◽  
Author(s):  
Sun-Sig Byun ◽  
Yunsoo Jang

We study homogenization of the conormal derivative problem for an elliptic system with discontinuous coefficients in a bounded domain. A uniform global [Formula: see text] estimate for [Formula: see text] is obtained under optimal assumptions that the coefficients have a small bounded mean oscillation (BMO) seminorm and the domain is a [Formula: see text]-Reifenberg flat domain whose boundary might be fractal.


2018 ◽  
Vol 20 (08) ◽  
pp. 1750053
Author(s):  
Sérgio H. Monari Soares ◽  
Yony R. Santaria Leuyacc

We will focus on the existence of nontrivial solutions to the following Hamiltonian elliptic system [Formula: see text] where [Formula: see text] is a positive function which can vanish at infinity and be unbounded from above and [Formula: see text] and [Formula: see text] have exponential growth range. The proof involves a truncation argument combined with the linking theorem and a finite-dimensional approximation.


Sign in / Sign up

Export Citation Format

Share Document