FAILURE PREDICTION OF COMPOSITE MATERIALS USING DEEP NEURAL NETWORKS

2021 ◽  
Author(s):  
ALLYSON FONTES ◽  
FARJAD SHADMEHRI

Fiber-reinforced polymer (FRP) composite materials are increasingly used in engineering applications. However, an investigation into the precision of conventional failure criteria, known as the World-Wide Failure Exercise (WWFEI), revealed that current theories remain unable to predict failure within an acceptable degree of accuracy. Deep Neural Networks (DNN) are emerging as an alternate and time-efficient technique for predicting the failure strength of FRP composite materials. The present study examined the applicability of DNNs as a tool for creating a data-driven failure model for composite materials. The experimental failure data presented in the WWFE-I were used to develop the datadriven model. A fully connected DNN with 23 input units and 1 output unit trained with a constant learning rate (α=0.0001). The network’s inputs described the laminates and the loading conditions applied to the test specimen, whereas the output was the length of the failure vector (L=(σx+σy+τxy)0.5). The DNN’s performance was evaluated using the mean squared error on a subset of the experimental data unseen during training. Network configurations with a varying number of hidden layers and units per layer were evaluated. The DNN with 3 hidden layers and 20 units per hidden layer performed the best. In fact, the network’s predictions show good agreement with the experimental results. The failure boundaries generated by the DNN were compared to three conventional theories: the Tsai-Wu, Cuntze, and Puck theory. The DNN’s failure envelopes were found to fit the experimental data more closely than the above-mentioned theories. In sum, the DNN’s ability to fit higher-order polynomials to data separates it from conventional failure criteria. This characteristic makes DNNs an effective method for predicting the failure strength of composite laminates.

Author(s):  
Shweta Dabetwar ◽  
Stephen Ekwaro-Osire ◽  
João Paulo Dias

Abstract Composite materials have enormous applications in various fields. Thus, it is important to have an efficient damage detection method to avoid catastrophic failures. Due to the existence of multiple damage modes and the availability of data in different formats, it is important to employ efficient techniques to consider all the types of damage. Deep neural networks were seen to exhibit the ability to address similar complex problems. The research question in this work is ‘Can data fusion improve damage classification using the convolutional neural network?’ The specific aims developed were to 1) assess the performance of image encoding algorithms, 2) classify the damage using data from separate experimental coupons, and 3) classify the damage using mixed data from multiple experimental coupons. Two different experimental measurements were taken from NASA Ames Prognostic Repository for Carbon Fiber Reinforced polymer. To use data fusion, the piezoelectric signals were converted into images using Gramian Angular Field (GAF) and Markov Transition Field. Using data fusion techniques, the input dataset was created for a convolutional neural network with three hidden layers to determine the damage states. The accuracies of all the image encoding algorithms were compared. The analysis showed that data fusion provided better results as it contained more information on the damages modes that occur in composite materials. Additionally, GAF was shown to perform the best. Thus, the combination of data fusion and deep neural network techniques provides an efficient method for damage detection of composite materials.


Author(s):  
Henrik Sergoyan

Customer experience and resource management determine the degree to which transportation service providers can compete in today’s heavily saturated markets. The paper investigates and suggests a new methodology to optimize calculations for Estimated Time of Arrival (from now on ETA, meaning the time it will take for the driver to reach the designated location) based on the data provided by GG collected from rides made in 2018. GG is a transportation service providing company, and it currently uses The Open Source Routing Machine (OSRM) which exhibits significant errors in the prediction phase. This paper shows that implementing algorithms such as XGBoost, CatBoost, and Neural Networks for the said task will improve the accuracy of estimation. Paper discusses the benefits and drawbacks of each model and then considers the performance of the stacking algorithm that combines several models into one. Thus, using those techniques, final results showed that Mean Squared Error (MSE) was decreased by 54% compared to the current GG model.


2011 ◽  
Vol 194-196 ◽  
pp. 1581-1585
Author(s):  
Chong Qiang Sun ◽  
Jian Yu Zhang ◽  
Bin Jun Fei

Progressive damage method is adopted to predict the static mechanics properties of FRP composite laminates with central hole. Progressive damage models with three different 3D failure criteria and material degradation models are established and analyzed via a user defined subroutine embedded into the general FEA package. Numerical results indicate that all the three 3D failure criteria can simulate the failure process of FRP laminates with central hole, but the final failure load is different. Degradation coefficient and the finite element mesh have significant effect on the numerical results.


2021 ◽  
Author(s):  
Huan Yang ◽  
Zhaoping Xiong ◽  
Francesco Zonta

AbstractClassical potentials are widely used to describe protein physics, due to their simplicity and accuracy, but they are continuously challenged as real applications become more demanding with time. Deep neural networks could help generating alternative ways of describing protein physics. Here we propose an unsupervised learning method to derive a neural network energy function for proteins. The energy function is a probability density model learned from plenty of 3D local structures which have been extensively explored by evolution. We tested this model on a few applications (assessment of protein structures, protein dynamics and protein sequence design), showing that the neural network can correctly recognize patterns in protein structures. In other words, the neural network learned some aspects of protein physics from experimental data.


2015 ◽  
Author(s):  
Andrew L Jones

Microarray images consist of thousands of spots, each of which corresponds to a different biological material. The microarray segmentation problem is to work out which pixels belong to which spots, even in presence of noise and corruption. We propose a solution based on deep neural networks, which achieves excellent results both on simulated and experimental data. We have made the source code for our solution available on Github under a permissive license.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Leandro L. S. Linhares ◽  
Aluisio I. R. Fontes ◽  
Allan M. Martins ◽  
Fábio M. U. Araújo ◽  
Luiz F. Q. Silveira

Recent researches have demonstrated that the Fuzzy Wavelet Neural Networks (FWNNs) are an efficient tool to identify nonlinear systems. In these structures, features related to fuzzy logic, wavelet functions, and neural networks are combined in an architecture similar to the Adaptive Neurofuzzy Inference Systems (ANFIS). In practical applications, the experimental data set used in the identification task often contains unknown noise and outliers, which decrease the FWNN model reliability. In order to reduce the negative effects of these erroneous measurements, this work proposes the direct use of a similarity measure based on information theory in the FWNN learning procedure. The Mean Squared Error (MSE) cost function is replaced by the Maximum Correntropy Criterion (MCC) in the traditional error backpropagation (BP) algorithm. The input-output maps of a real nonlinear system studied in this work are identified from an experimental data set corrupted by different outliers rates and additive white Gaussian noise. The results demonstrate the advantages of the proposed cost function using the MCC as compared to the MSE. This work also investigates the influence of the kernel size on the performance of the MCC in the BP algorithm, since it is the only free parameter of correntropy.


2020 ◽  
Vol 28 (5) ◽  
pp. 7515 ◽  
Author(s):  
Yanwang Zhai ◽  
Shiyao Fu ◽  
Jianqiang Zhang ◽  
Xueting Liu ◽  
Heng Zhou ◽  
...  

The basic fatigue damage mechanisms in composite laminates are reviewed. Based on these mechanisms a pattern in the fatigue-life diagrams is proposed. Several experimental data are shown to agree with this basic pattern. Fatigue ratio is defined in terms of strains, and fatigue limit is shown to exist for unidirectional, cross-plied and angle-plied laminates. The limitations to the fatigue performance of composite laminates are pointed out and suggestions for improving the fatigue resistance are made.


2020 ◽  
Author(s):  
Matthew F. Sharrock ◽  
W. Andrew Mould ◽  
Hasan Ali ◽  
Meghan Hildreth ◽  
Issam A. Awad ◽  
...  

AbstractIntracranial hemorrhage (ICH) occurs when a blood vessel ruptures in the brain. This leads to significant morbidity and mortality, the likelihood of which is predicated on the size of the bleeding event. X-ray computed tomography (CT) scans allow clinicians and researchers to qualitatively and quantitatively diagnose hemorrhagic stroke, guide interventions and determine inclusion criteria of patients in clinical trials. There is no currently available open source, validated tool to quickly segment hemorrhage. Using an automated pipeline and 2D and 3D deep neural networks, we show that we can quickly and accurately estimate ICH volume with high agreement with time-consuming manual segmentation. The training and validation datasets include significant heterogeneity in terms of pathology, such as the presence of intraventricular (IVH) or subdural hemorrhages (SDH) as well as variable image acquisition parameters. We show that deep neural networks trained with an appropriate anatomic context in the network receptive field, can effectively perform ICH segmentation, but those without enough context will overestimate hemorrhage along the skull and around calcifications in the ventricular system. We trained with all data from a multi-center phase II study (n = 112) achieving a best mean and median Dice coefficient of 0.914 and 0.919, a volume correlation of 0.979 and an average volume difference of 1.7ml and root mean squared error of 4.7ml in 500 out-of-sample scans from the corresponding multi-center phase III study. 3D networks with appropriate anatomic context outperformed both 2D and random forest models. Our results suggest that deep neural network models, when carefully developed can be incorporated into the workflow of an ICH clinical trial series to quickly and accurately segment ICH, estimate total hemorrhage volume and minimize segmentation failures. The model, weights and scripts for deployment are located at https://github.com/msharrock/deepbleed. This is the first publicly available neural network model for segmentation of ICH, the only model evaluated with the presence of both IVH and SDH and the only model validated in the workflow of a series of clinical trials.


Sign in / Sign up

Export Citation Format

Share Document