scholarly journals Application Prospect of Blockchain Technology in Energy Field and Analysis of Impact on Power Grid Enterprises

Author(s):  
Yi-xin SUN Yi-xin SUN ◽  
Di WANG Di WANG
Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7418
Author(s):  
Reo Kontani ◽  
Kenji Tanaka ◽  
Yuji Yamada

Distributed energy resources (DERs) play an indispensable role in mitigating global warming. The DERs require flexibility owing to the uncertainty of their power output when connected to the power grid. Recently, blockchain technology has actualized peer-to-peer (P2P) energy markets, promoting efficient and resilient flexibility in the power grid. This study aimed to extract insights about the contribution of the P2P energy markets to ensuring flexibility through analyzing transaction data. The data source was a demonstration project regarding the P2P energy markets conducted from 2019 to 2020 in Urawa-Misono District, Japan. The participants in the project were photovoltaic generators (PVGs), convenience stores (CSs), and residences equipped with battery storage as the only flexibility in the market. We quantitatively analyzed the prices and volumes ordered or transacted by each participant. The execution prices purchased by the residences were lower than those purchased by CSs; the differences between execution prices and order prices of the residences were narrower than those of PVGs and CSs; the lower state-of-charge (SoC) in the storage battery induced the higher purchasing prices. Thus, P2P energy markets, where holding flexibility resulted in the advantageous position, can promote installing flexibility through market mechanisms.


Author(s):  
Oliver Dzobo ◽  
Bessie Malila ◽  
Lindokhuhle Sithole

AbstractThe integration of distributed renewable energy sources into the conventional power grid has become a hot research topic, all part of attempts to reduce greenhouse gas emission. There are many distributed renewable energy sources available and the network participants in energy delivery have also increased. This makes the management of the new power grid with integrated distributed renewable energy sources extremely complex. Applying the technical advantages of blockchain technology to this complex system to manage peer-to-peer energy sharing, transmission, data storage and build smart contracts between network participants can develop an optimal consensus mechanism within the new power grid. This paper proposes a new framework for the application of blockchain in a decentralised energy network. The microgrid is assumed to be private and managed by local prosumers. An overview description of the proposed model and a case study are presented in the paper.


Author(s):  
Xueyong Tang ◽  
Qingsheng Li ◽  
Qisheng Liu ◽  
Yi Xue ◽  
Yan Liu ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1317
Author(s):  
Longze Wang ◽  
Shucen Jiao ◽  
Yu Xie ◽  
Saif Mubaarak ◽  
Delong Zhang ◽  
...  

Peer-to-peer (P2P) energy management is one of the most viable solutions to incentivize prosumers in renewable energy microgrids. As the application of blockchain expends from the finance field to energy field, blockchain technology provides a new opportunity for distributed energy systems. However, a distributed energy system based on blockchains allows any node in the whole network to read data. In many application scenarios, user privacy cannot be effectively protected, and there is a security problem that the attack cannot be traced. In this paper, we propose an energy management mode based on a permissioned blockchain for a renewable energy microgrid. The novel permissioned blockchain framework uses entity mapping with a unique identity for each enterprise, natural person, or device, in order to avoid ineligible participants to join the microgrid. Each peer entity keeps the transaction information index of the whole network, but only keeps its own specific transaction information, so they can retrieve the transaction information of other peer entities but cannot obtain the details without permission. Moreover, this model could avoid communication delays and promote plug-and-play due to the distributed nature of the permissioned blockchain. The performance of the proposed method is evaluated with a demonstration program which is designed and deployed on a Hyperledger Fabric permissioned blockchain. Simulation results show the feasibility of the proposed method, and the model is conducive to the protection privacy and P2P energy management for decentralized energy systems.


2009 ◽  
Author(s):  
David Close ◽  
Kari Babski-Reeves ◽  
Nick Younan ◽  
Noel Schulz

Author(s):  
Shreya Joshi ◽  
Ms Bhavyaa ◽  
Suhani Gupta ◽  
Lalita Luthra

Blockchain is considered to be a disruptive core technology. Although many researchers have realized the importance of blockchain, but the research of it is still emerging. It is the record-keeping technology behind bitcoin and is one of the hottest and fastest growing skills in the IT sector today. It serves as an immutable ledger which allows transactions to take place in a decentralized man Blockchain-based applications are rising up, covering numerous fields including finance, healthcare, product management, Internet of Things (IoT), and many more. However, there are still some challenges of blockchain technology such as scalability and security problems which need to be overcome. This paper comprises of a comprehensive study of Blockchain technology. We have included here a deep dive into how blockchains work, its architecture, consensus and various applications. Furthermore, technical challenges are briefly listed.


Sign in / Sign up

Export Citation Format

Share Document