scholarly journals Temporal Nonlinear Site Response During Kumamoto Mw 7.0 Earthquake Inferred from Borehole Strong Motion Data

Author(s):  
Junju Xie ◽  
Chunquan Wu
2011 ◽  
Vol 9 (3) ◽  
pp. 869-892 ◽  
Author(s):  
R. Puglia ◽  
R. Ditommaso ◽  
F. Pacor ◽  
M. Mucciarelli ◽  
L. Luzi ◽  
...  

1988 ◽  
Author(s):  
Kenneth W. Campbell ◽  
Sylvester Theodore Algermissen

2021 ◽  
Vol 109 ◽  
pp. 103253
Author(s):  
Sarit Chanda ◽  
M.C. Raghucharan ◽  
K.S.K. Karthik Reddy ◽  
Vasudeo Chaudhari ◽  
Surendra Nadh Somala

Author(s):  
John D. Thornley ◽  
Utpal Dutta ◽  
John Douglas ◽  
Zhaohui (Joey) Yang

ABSTRACT Anchorage, Alaska, is a natural laboratory for recording strong ground motions from a variety of earthquake sources. The city is situated in a tectonic region that includes the interface and intraslab earthquakes related to the subducting Pacific plate and crustal earthquakes from the upper North American plate. The generalized inversion technique was used with a local rock reference station to develop site response at >20 strong-motion stations in Anchorage. A database of 94 events recorded at these sites from 2005 to 2019 was also compiled and processed to compare their site response with those in the 2018 Mw 7.1 event (main event). The database is divided into three datasets, including 75 events prior to the main event, the main event, and 19 aftershocks. The stations were subdivided into the site classes defined in the National Earthquake Hazards Reduction Program based on estimated average shear-wave velocity in of the upper 30 m (VS30), and site-response results from the datasets were compared. Nonlinear site response was observed at class D and DE sites (VS30 of 215–300 and 150–215  m/s, respectively) but not at class CD and C sites (VS30 of 300–440 and 440–640  m/s, respectively). The relationship of peak ground acceleration versus peak ground velocity divided by VS30 (shear-strain proxy) was shown to further support the observation that sites with lower VS30 experienced nonlinear site response.


2021 ◽  
Vol 21 (1) ◽  
pp. 1_25-1_45
Author(s):  
Toshihide KASHIMA ◽  
Shin KOYAMA ◽  
Hiroto NAKAGAWA

1994 ◽  
Vol 37 (6) ◽  
Author(s):  
B. P. Cohee ◽  
G. C. Beroza

In this paper we compare two time-domain inversion methods that have been widely applied to the problem of modeling earthquake rupture using strong-motion seismograms. In the multi-window method, each point on the fault is allowed to rupture multiple times. This allows flexibility in the rupture time and hence the rupture velocity. Variations in the slip-velocity function are accommodated by variations in the slip amplitude in each time-window. The single-window method assumes that each point on the fault ruptures only once, when the rupture front passes. Variations in slip amplitude are allowed and variations in rupture velocity are accommodated by allowing the rupture time to vary. Because the multi-window method allows greater flexibility, it has the potential to describe a wider range of faulting behavior; however, with this increased flexibility comes an increase in the degrees of freedom and the solutions are comparatively less stable. We demonstrate this effect using synthetic data for a test model of the Mw 7.3 1992 Landers, California earthquake, and then apply both inversion methods to the actual recordings. The two approaches yield similar fits to the strong-motion data with different seismic moments indicating that the moment is not well constrained by strong-motion data alone. The slip amplitude distribution is similar using either approach, but important differences exist in the rupture propagation models. The single-window method does a better job of recovering the true seismic moment and the average rupture velocity. The multi-window method is preferable when rise time is strongly variable, but tends to overestimate the seismic moment. Both methods work well when the rise time is constant or short compared to the periods modeled. Neither approach can recover the temporal details of rupture propagation unless the distribution of slip amplitude is constrained by independent data.


Sign in / Sign up

Export Citation Format

Share Document