peak ground velocity
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 83)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
pp. 875529302110560
Author(s):  
Yousef Bozorgnia ◽  
Norman A Abrahamson ◽  
Sean K Ahdi ◽  
Timothy D Ancheta ◽  
Linda Al Atik ◽  
...  

This article summarizes the Next Generation Attenuation (NGA) Subduction (NGA-Sub) project, a major research program to develop a database and ground motion models (GMMs) for subduction regions. A comprehensive database of subduction earthquakes recorded worldwide was developed. The database includes a total of 214,020 individual records from 1,880 subduction events, which is by far the largest database of all the NGA programs. As part of the NGA-Sub program, four GMMs were developed. Three of them are global subduction GMMs with adjustment factors for up to seven worldwide regions: Alaska, Cascadia, Central America and Mexico, Japan, New Zealand, South America, and Taiwan. The fourth GMM is a new Japan-specific model. The GMMs provide median predictions, and the associated aleatory variability, of RotD50 horizontal components of peak ground acceleration, peak ground velocity, and 5%-damped pseudo-spectral acceleration (PSA) at oscillator periods ranging from 0.01 to 10 s. Three GMMs also quantified “within-model” epistemic uncertainty of the median prediction, which is important in regions with sparse ground motion data, such as Cascadia. In addition, a damping scaling model was developed to scale the predicted 5%-damped PSA of horizontal components to other damping ratios ranging from 0.5% to 30%. The NGA-Sub flatfile, which was used for the development of the NGA-Sub GMMs, and the NGA-Sub GMMs coded on various software platforms, have been posted for public use.


Author(s):  
Trevor I. Allen

ABSTRACT The Australian territory is just over 400 km from an active convergent plate margin with the collision of the Sunda–Banda Arc with the Precambrian and Palaeozoic Australian continental crust. Seismic energy from earthquakes in the northern Australian plate-margin region are channeled efficiently through the low-attenuation North Australian craton (NAC), with moderate-sized (Mw≥5.0) earthquakes in the Banda Sea commonly felt in northern Australia. A far-field ground-motion model (GMM) has been developed for use in seismic hazard studies for sites located within the NAC. The model is applicable for hypocentral distances of approximately 500–1500 km and magnitudes up to Mw 8.0. The GMM provides coefficients for peak ground acceleration, peak ground velocity, and 5%-damped pseudospectral acceleration at 20 oscillator periods from 0.1 to 10 s. A strong hypocentral depth dependence is observed in empirical data, with earthquakes occurring at depths of 100–200 km demonstrating larger amplitudes for short-period ground motions than events with shallower hypocenters. The depth dependence of ground motion diminishes with longer spectral periods, suggesting that the relatively larger ground motions for deeper earthquake hypocenters may be due to more compact ruptures producing higher stress drops at depth. Compared with the mean Next Generation Attenuation-East GMM developed for the central and eastern United States (which is applicable for a similar distance range), the NAC GMM demonstrates significantly higher short-period ground motion for Banda Sea events, transitioning to lower relative accelerations for longer period ground motions.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7649
Author(s):  
Yih-Min Wu ◽  
Himanshu Mittal

Seismic instrumentation for earthquake early warnings (EEWs) has improved significantly in the last few years, considering the station coverage, data quality, and the related applications. The official EEW system in Taiwan is operated by the Central Weather Bureau (CWB) and is responsible for issuing the regional warning for moderate-to-large earthquakes occurring in and around Taiwan. The low-cost micro-electro-mechanical system (MEMS)-based P-Alert EEW system is operational in Taiwan for on-site warnings and for producing shakemaps. Since 2010, this P-Alert system, installed by the National Taiwan University (NTU), has shown its importance during various earthquakes that caused damage in Taiwan. Although the system is capable of acting as a regional as well as an on-site warning system, it is particularly useful for on-site warning. Using real-time seismic signals, each P-Alert system can provide a 2–8 s-long warning time for the locations situated in the blind zone of the CWB regional warning system. The shakemaps plotted using this instrumentation help to assess the damage pattern and rupture directivity, a key feature in the risk mitigation process. These shakemaps are delivered to the intended users, including the disaster mitigation authorities, for possible relief purposes. Earlier, the network provided only peak ground acceleration (PGA) shakemaps, but has now been updated to include peak ground velocity (PGV), spectral acceleration (Sa) at different periods, and CWB intensity maps. The PGA and PGV shakemaps plotted using this network have proven helpful in establishing the fact that PGV is a better indicator of damage detection than PGA. This instrumentation is also useful in structural health-monitoring and estimating co-seismic deformations. Encouraged by the performance of the P-Alert network, more instruments are installed in Asia-Pacific countries.


2021 ◽  
Vol 13 (21) ◽  
pp. 4478
Author(s):  
Zhiyu Gao ◽  
Yanchuan Li ◽  
Xinjian Shan ◽  
Chuanhua Zhu

Peak ground displacement (PGD) and peak ground velocity (PGV) are critical parameters during earthquake early warning, as they can provide rapid magnitude estimation before rupture end. In this study, we used the high-rate Global Navigation Satellite System (GNSS) data from 55 continuous stations to estimate the magnitude of the 2021 Maduo earthquake in western China. We used the relative positioning method and variometric approach to acquire real-time GNSS displacement and velocity waveforms, respectively. The results showed the amplitude of displacement and velocity waveforms gradually decreased with increasing hypocentral distance. Our results showed that the fluctuation of PGD magnitudes over time is smaller than that of PGV magnitudes. Nonetheless, the earthquake magnitudes estimated from both methods were consistent with their counterparts (Mw 7.3) reported by the United States Geological Survey (USGS). The final magnitude estimated from the PGD and PGV methods were Mw 7.25 and Mw 7.31, respectively. In addition, our results highlighted how the number of high-rate GNSS stations could influence the stability and convergence time of magnitude estimation.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Florin Pavel

This study focuses on the assessment of the correlation and variability of ground motion amplitudes recorded in Bucharest area during Vrancea intermediate-depth earthquakes from a database of 119 pairs of horizontal components. Empirical models for the evaluation of the peak ground velocity and displacement from spectral accelerations are proposed in this study. The distribution of the shear wave velocities from 41 boreholes at specific depths appears to follow a normal probability distribution. The analysis performed in this study has also shown that the variability of peak ground velocities and displacements does not appear to be influenced by the earthquake magnitude. In addition, it was observed that the variability in terms of shear wave velocities at specific depths is smaller than the variability of the spectral amplitudes of the recorded ground motions. The empirical site-amplification factors from the Eurocode 8 draft fail to capture the long-period spectral amplifications observed in Bucharest area during large magnitude Vrancea intermediate-depth earthquakes.


Author(s):  
Yin Cheng ◽  
Tongtong Liu ◽  
Jianfeng Wang ◽  
Chao-Lie Ning

ABSTRACT In earthquake engineering, it is acknowledged that a vector of intensity measures (IMs) can better predict seismic structural responses than a single measure. Hence, a vector of IMs is widely applied in a number of applications, such as probabilistic seismic hazard analysis, probabilistic seismic risk analysis, and ground-motion selections. Spectral input energy (EI) has been demonstrated as a promising IM in earthquake engineering, especially in the energy-based seismic design of structures. However, this important measure has not been included in the vector of IMs. Therefore, it is worthwhile to incorporate EI with other important IMs by examining correlations. This study analyzes the empirical correlations of spectral EI with peak amplitude-based IMs, cumulative-based IMs, and duration-related IMs. It is found that spectral absolute EI has strong correlations with peak ground velocity at all investigated periods. However, spectral EI is negatively correlated with duration-based IMs. To demonstrate the applicability of the examined correlations, a simple example is finally presented by employing EI for the ground-motion selections and seismic hazard assessment based on the generalized conditional intensity measure approach.


2021 ◽  
Author(s):  
Jonatan Glehman ◽  
Michael Tsesarsky

Abstract. In Israel, due to low seismicity rates and sparse seismic network, the temporal and spatial coverage of ground motion data is insufficient to estimate the variability of moderate-strong (M > 6) ground motions required to construct a local ground motion model (GMM). To fill this data gap and to study the ground motions variability of M > 6 events, we performed a series of 3-D numerical simulations of M 6 and M 7 earthquakes. Based on the results of the simulations, we developed a statistical attenuation model (AM) and studied the residuals between simulated and AM PGVs and the single station variability. We also compared the simulated ground motions with a global GMM in terms of peak ground velocity (PGV) and significant duration (Ds 595). Our results suggest that the AM was unable to fully capture the simulated ground motions variability, mainly due to the incorporation of super-shear rupture and effects of local sedimentary structures. We also show that an imported GMM considerably deviates from simulated ground motions. This work sets the basis for future development of a comprehensive GMM for Israel, accounting for local sources, path, and site effects.


2021 ◽  
Vol 873 (1) ◽  
pp. 012046
Author(s):  
T Razin ◽  
K Khatimah ◽  
Y Annisa ◽  
A Hamzah ◽  
M F I Massinai

Abstract The Lombok region is located around a complex tectonic zone with an Indo-Australian oceanic crust transition zone with Australian continental crust in the west and Sundanese arc in the east. This complexity makes some area in West Nusa Tenggara have a high level of earthquake vulnerability and to determine the potential level of seismic damage risk this study was conducted by analyzing Peak Ground Acceleration (PGA) and Peak Ground Velocity (PGV) using earthquake data since 2000 - March 2020 with an intensity more than M4.5. Earthquake data are analyzed using the Yin-Min Yu formula to get the relationship between Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), and earthquake intensity, so areas with risk level of earthquake damage can be mapped as preliminary earthquake mitigation schemes. The results of the study show that the highest PGA value in West Nusa Tenggara is 74.73 gal at the bedrock and when it on the surface, the PGA value can increase due to amplification of local soil conditions. Likewise PGV value about 32.21 gal where this maximum value is located in East Lombok Regency and North Lombok Regency. According to the classification of PGA and PGV values, the study area has a potential high-risk level of earthquake damage.


2021 ◽  
pp. 107754632110399
Author(s):  
Lifang Pai ◽  
Honggang Wu ◽  
Hao Lei

Taking the 3D cross-engineering of Caomeigou No.1 Tunnel and Pandaoling Tunnel as an example, a shaking table test was carried out to study the effect of tunnel spatial position on seismic wave propagation characteristics and acceleration response of surrounding rock under earthquake seismic excitation. Based on the influence of the spatial position of the tunnel, the characteristic form of the surrounding rock between the cross section and non-cross section is divided, and the accelerometer layout scheme is designed. Based on statistical probability, the ratio of peak ground velocity to peak ground acceleration (PGA) was introduced to quantitatively characterize the characteristics of seismic wave propagation spectrum. Furthermore, the SPECTR calculation was used to obtain the regional difference in the seismic wave propagation potential damage potential displacement parameter ( P d). Under the influence of the spatial location of the 3D cross tunnel, the peak acceleration and motion duration of the seismic wave are mainly reflected in the variation of the section along the elevation direction. Low-frequency (≤20 Hz) seismic waves have a greater impact on the tunnel structure, and peak ground velocity/peak ground acceleration ratio has a positive correlation with the peak input energy of ground motion. The ultra-small net-spacing cross tunnel has a spatially distributed coupling deformation effect. The crown of the upper-span tunnel is highly sensitive to earthquakes and becomes a weak link in seismic design. These results help us provide a theoretical basis for the seismic design of the cross-tunnel.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mitsuyuki Hoshiba

Earthquake early warning (EEW) systems aim to provide advance warning of impending ground shaking, and the technique used for real-time prediction of shaking is a crucial element of EEW systems. Many EEW systems are designed to predict the strength of seismic ground motions (peak ground acceleration, peak ground velocity, or seismic intensity) based on rapidly estimated source parameters (the source-based method), such as hypocentral location, origin time, magnitude, and extent of fault rupture. Recently, however, the wavefield-based (or ground-motion-based) method has been developed to predict future ground motions based directly on the current wavefield, i.e., ground motions monitored in real-time at neighboring sites, skipping the process of estimation of the source parameters. The wavefield-based method works well even for large earthquakes with long duration and huge rupture extents, highly energetic earthquakes that deviate from standard empirical relations, and multiple simultaneous earthquakes, for which the conventional source-based method sometimes performs inadequately. The wavefield-based method also enables prediction of the ongoing seismic waveform itself using the physics of wave propagation, thus providing information on the duration, in addition to the strength of strong ground motion for various frequency bands. In this paper, I review recent developments of the wavefield-based method, from simple applications using relatively sparse observation networks to sophisticated data assimilation techniques exploiting dense networks.


Sign in / Sign up

Export Citation Format

Share Document