scholarly journals Classification of Simultaneous Motions using Wavelet-based Time-frequency Representation of EMG Signals

Author(s):  
Nan Bu ◽  
Takayuki Mukaeda
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Suraj ◽  
Purnendu Tiwari ◽  
Subhojit Ghosh ◽  
Rakesh Kumar Sinha

Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO basedK-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO basedK-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) basedK-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed.


Author(s):  
Weihown Tee ◽  
M. R. Yusoff ◽  
M. Faizal Yaakub ◽  
A. R. Abdullah

This paper presents a comparatively contemporary easy to use technique for the identification and classification of voltage variations. The technique was established based on the Gabor Transform and the rule-based classification method. The technique was tested by using mathematical model of Power Quality (PQ) disturbances based on the IEEE Std 519-2009. The PQ disturbances focused were the voltage variations, which included voltage sag, swell and interruption. A total of 80 signals were simulated from the mathematical model in MATLAB and used in this study. The signals were analyzed by using Gabor Transform and the signal pattern, time-frequency representation (TFR) and root-mean-square voltage graph were presented in this paper. The features of the analysis were extracted, and rules were implemented in rule-based classification to identify and classify the voltage variation accordingly. The results showed that this method is easy to be used and has good accuracy in classifying the voltage variation.


2017 ◽  
Vol 27 (04) ◽  
pp. 1750005 ◽  
Author(s):  
Zhong-Ke Gao ◽  
Qing Cai ◽  
Yu-Xuan Yang ◽  
Na Dong ◽  
Shan-Shan Zhang

Detecting epileptic seizure from EEG signals constitutes a challenging problem of significant importance. Combining adaptive optimal kernel time-frequency representation and visibility graph, we develop a novel method for detecting epileptic seizure from EEG signals. We construct complex networks from EEG signals recorded from healthy subjects and epilepsy patients. Then we employ clustering coefficient, clustering coefficient entropy and average degree to characterize the topological structure of the networks generated from different brain states. In addition, we combine energy deviation and network measures to recognize healthy subjects and epilepsy patients, and further distinguish brain states during seizure free interval and epileptic seizures. Three different experiments are designed to evaluate the performance of our method. The results suggest that our method allows a high-accurate classification of epileptiform EEG signals.


Author(s):  
Rishi Raj Sharma ◽  
Mohit Kumar ◽  
Ram Bilas Pachori

Electromyogram (EMG) signals are commonly used by doctors to diagnose abnormality of muscles. Manual analysis of EMG signals is a time-consuming and cumbersome task. Hence, this chapter aims to develop an automated method to detect abnormal EMG signals. First, authors have applied the improved eigenvalue decomposition of Hankel matrix and Hilbert transform (IEVDHM-HT) method to obtain the time-frequency (TF) representation of motor unit action potentials (MUAPs) extracted from EMG signals. Then, the obtained TF matrices are used for features extraction. TF matrix has been sliced into several parts and fractional energy in each slice is computed. A percentile-based slicing is applied to obtain discriminating features. Finally, the features are used as an input to the classifiers such as random forest, least-squares support vector machine, and multilayer perceptron to classify the EMG signals namely, normal and ALS, normal and myopathy, and ALS and myopathy, and achieved accuracy of 83%, 80.8%, and 96.7%, respectively.


Sign in / Sign up

Export Citation Format

Share Document