scholarly journals Large Deviations for the Single-Server Queue and the Reneging Paradox

Author(s):  
Rami Atar ◽  
Amarjit Budhiraja ◽  
Paul Dupuis ◽  
Ruoyu Wu

For the M/M/1+M model at the law-of-large-numbers scale, the long-run reneging count per unit time does not depend on the individual (i.e., per customer) reneging rate. This paradoxical statement has a simple proof. Less obvious is a large deviations analogue of this fact, stated as follows: the decay rate of the probability that the long-run reneging count per unit time is atypically large or atypically small does not depend on the individual reneging rate. In this paper, the sample path large deviations principle for the model is proved and the rate function is computed. Next, large time asymptotics for the reneging rate are studied for the case when the arrival rate exceeds the service rate. The key ingredient is a calculus of variations analysis of the variational problem associated with atypical reneging. A characterization of the aforementioned decay rate, given explicitly in terms of the arrival and service rate parameters of the model, is provided yielding a precise mathematical description of this paradoxical behavior.

2021 ◽  
Author(s):  
Martin Zubeldia ◽  
Michel Mandjes

AbstractWe consider an acyclic network of single-server queues with heterogeneous processing rates. It is assumed that each queue is fed by the superposition of a large number of i.i.d. Gaussian processes with stationary increments and positive drifts, which can be correlated across different queues. The flow of work departing from each server is split deterministically and routed to its neighbors according to a fixed routing matrix, with a fraction of it leaving the network altogether. We study the exponential decay rate of the probability that the steady-state queue length at any given node in the network is above any fixed threshold, also referred to as the ‘overflow probability’. In particular, we first leverage Schilder’s sample-path large deviations theorem to obtain a general lower bound for the limit of this exponential decay rate, as the number of Gaussian processes goes to infinity. Then, we show that this lower bound is tight under additional technical conditions. Finally, we show that if the input processes to the different queues are nonnegatively correlated, non-short-range dependent fractional Brownian motions, and if the processing rates are large enough, then the asymptotic exponential decay rates of the queues coincide with the ones of isolated queues with appropriate Gaussian inputs.


2021 ◽  
Vol 183 (3) ◽  
Author(s):  
Bart van Ginkel ◽  
Bart van Gisbergen ◽  
Frank Redig

AbstractWe study a model of active particles that perform a simple random walk and on top of that have a preferred direction determined by an internal state which is modelled by a stationary Markov process. First we calculate the limiting diffusion coefficient. Then we show that the ‘active part’ of the diffusion coefficient is in some sense maximal for reversible state processes. Further, we obtain a large deviations principle for the active particle in terms of the large deviations rate function of the empirical process corresponding to the state process. Again we show that the rate function and free energy function are (pointwise) optimal for reversible state processes. Finally, we show that in the case with two states, the Fourier–Laplace transform of the distribution, the moment generating function and the free energy function can be computed explicitly. Along the way we provide several examples.


2018 ◽  
Vol 50 (3) ◽  
pp. 983-1004 ◽  
Author(s):  
Tanguy Cabana ◽  
Jonathan D. Touboul

Abstract We continue the analysis of large deviations for randomly connected neural networks used as models of the brain. The originality of the model relies on the fact that the directed impact of one particle onto another depends on the state of both particles, and they have random Gaussian amplitude with mean and variance scaling as the inverse of the network size. Similarly to the spatially extended case (see Cabana and Touboul (2018)), we show that under sufficient regularity assumptions, the empirical measure satisfies a large deviations principle with a good rate function achieving its minimum at a unique probability measure, implying, in particular, its convergence in both averaged and quenched cases, as well as a propagation of a chaos property (in the averaged case only). The class of model we consider notably includes a stochastic version of the Kuramoto model with random connections.


1984 ◽  
Vol 16 (1) ◽  
pp. 8-8
Author(s):  
J. S. Baras ◽  
A. J. Dorsey ◽  
A. M. Makowski

A state-space model is presented for a queueing system where two classes of customer compete in discrete-time for the service attention of a single server with infinite buffer capacity. The arrivals are modelled by an independent identically distributed random sequence of a general type while the service completions are generated by independent Bernoulli streams; the allocation of service attention is governed by feedback policies which are based on past decisions and buffer content histories. The cost of operation per unit time is a linear function of the queue sizes. Under the model assumptions, a fixed prioritization scheme, known as the μc -rule, is shown to be optimal when the expected long-run average criterion and the expected discounted criterion, over both finite and infinite horizons, are used. This static prioritization of the two classes of customers is done solely on the basis of service and cost parameters. The analysis is based on the dynamic programming methodology for Markov decision processes and takes advantage of the sample-path properties of the adopted state-space model.


1999 ◽  
Vol 36 (3) ◽  
pp. 733-746 ◽  
Author(s):  
Harri Nyrhinen

Let {Yn | n=1,2,…} be a stochastic process and M a positive real number. Define the time of ruin by T = inf{n | Yn > M} (T = +∞ if Yn ≤ M for n=1,2,…). We are interested in the ruin probabilities for large M. Define the family of measures {PM | M > 0} by PM(B) = P(T/M ∊ B) for B ∊ ℬ (ℬ = Borel sets of ℝ). We prove that for a wide class of processes {Yn}, the family {PM} satisfies a large deviations principle. The rate function will correspond to the approximation P(T/M ≈ x) ≈ P(Y⌈xM⌉/M ≈ 1) for x > 0. We apply the result to a simulation problem.


2018 ◽  
Vol 50 (3) ◽  
pp. 944-982 ◽  
Author(s):  
Tanguy Cabana ◽  
Jonathan D. Touboul

Abstract In a series of two papers, we investigate the large deviations and asymptotic behavior of stochastic models of brain neural networks with random interaction coefficients. In this first paper, we take into account the spatial structure of the brain and consider first the presence of interaction delays that depend on the distance between cells and then the Gaussian random interaction amplitude with a mean and variance that depend on the position of the neurons and scale as the inverse of the network size. We show that the empirical measure satisfies a large deviations principle with a good rate function reaching its minimum at a unique spatially extended probability measure. This result implies an averaged convergence of the empirical measure and a propagation of chaos. The limit is characterized through a complex non-Markovian implicit equation in which the network interaction term is replaced by a nonlocal Gaussian process with a mean and covariance that depend on the statistics of the solution over the whole neural field.


2016 ◽  
Vol 5 (2) ◽  
pp. 1
Author(s):  
Yao Luo ◽  
Eunji Lim

When estimating an unknown function from a data set of n observations, the function is often known to be convex. For example, the long-run average waiting time of a customer in a single server queue is known to be convex in the service rate (Weber 1983) even though there is no closed-form formula for the mean waiting time, and hence, it needs to be estimated from a data set. A computationally efficient way of finding the best fit of the convex function to the data set is to compute the least absolute deviations estimator minimizing the sum of absolute deviations over the set of convex functions. This estimator exhibits numerically preferred behavior since it can be computed faster and for a larger data sets compared to other existing methods (Lim & Luo 2014). In this paper, we establish the validity of the least absolute deviations estimator by proving that the least absolute deviations estimator converges almost surely to the true function as n increases to infinity under modest assumptions.


2011 ◽  
Vol 48 (03) ◽  
pp. 688-698 ◽  
Author(s):  
Ken R. Duffy ◽  
Giovanni Luca Torrisi

It is shown that the sample paths of Poisson shot noise with heavy-tailed semiexponential distributions satisfy a large deviation principle with a rate function that is insensitive to the shot shape. This demonstrates that, on the scale of large deviations, paths to rare events do not depend on the shot shape.


2021 ◽  
Author(s):  
Nur Sunar ◽  
Yichen Tu ◽  
Serhan Ziya

It is generally accepted that operating with a combined (i.e., pooled) queue rather than separate (i.e., dedicated) queues is beneficial because pooling queues reduces long-run average sojourn time. In fact, this is a well-established result in the literature when jobs cannot make decisions and servers and jobs are identical. An important corollary of this finding is that pooling queues improves social welfare in the aforementioned setting. We consider an observable multiserver queueing system that can be operated with either dedicated queues or a pooled one. Customers are delay-sensitive, and they decide to join or balk based on queue length information upon arrival; they are not subject to an external admission control. In this setting, we prove that, contrary to the common understanding, pooling queues can increase the long-run average sojourn time so much that the pooled system results in strictly smaller social welfare (and strictly smaller consumer surplus) than the dedicated system under certain conditions. Specifically, pooling queues hurts performance when the arrival-rate-to-service-rate ratio is large (e.g., greater than one) and the normalized service benefit is also large. We prove that the performance loss due to pooling queues can be significant. Our numerical studies demonstrate that pooling queues can decrease the social welfare (and consumer surplus) by more than 95%. The benefit of pooling is commonly believed to increase with system size. In contrast, we show that when delay-sensitive customers make rational joining decisions, the magnitude of the performance loss due to pooling can strictly increase with the system size. This paper was accepted by Terry Taylor, operations management.


Sign in / Sign up

Export Citation Format

Share Document